1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
from tiktoken.load import data_gym_to_mergeable_bpe_ranks, load_tiktoken_bpe
ENDOFTEXT = "<|endoftext|>"
FIM_PREFIX = "<|fim_prefix|>"
FIM_MIDDLE = "<|fim_middle|>"
FIM_SUFFIX = "<|fim_suffix|>"
ENDOFPROMPT = "<|endofprompt|>"
# The pattern in the original GPT-2 release is:
# r"""'s|'t|'re|'ve|'m|'ll|'d| ?[\p{L}]+| ?[\p{N}]+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
# This is equivalent, but executes faster:
r50k_pat_str = (
r"""'(?:[sdmt]|ll|ve|re)| ?\p{L}++| ?\p{N}++| ?[^\s\p{L}\p{N}]++|\s++$|\s+(?!\S)|\s"""
)
def gpt2():
mergeable_ranks = data_gym_to_mergeable_bpe_ranks(
vocab_bpe_file="https://openaipublic.blob.core.windows.net/gpt-2/encodings/main/vocab.bpe",
encoder_json_file="https://openaipublic.blob.core.windows.net/gpt-2/encodings/main/encoder.json",
vocab_bpe_hash="1ce1664773c50f3e0cc8842619a93edc4624525b728b188a9e0be33b7726adc5",
encoder_json_hash="196139668be63f3b5d6574427317ae82f612a97c5d1cdaf36ed2256dbf636783",
)
return {
"name": "gpt2",
"explicit_n_vocab": 50257,
"pat_str": r50k_pat_str,
"mergeable_ranks": mergeable_ranks,
"special_tokens": {ENDOFTEXT: 50256},
}
def r50k_base():
mergeable_ranks = load_tiktoken_bpe(
"https://openaipublic.blob.core.windows.net/encodings/r50k_base.tiktoken",
expected_hash="306cd27f03c1a714eca7108e03d66b7dc042abe8c258b44c199a7ed9838dd930",
)
return {
"name": "r50k_base",
"explicit_n_vocab": 50257,
"pat_str": r50k_pat_str,
"mergeable_ranks": mergeable_ranks,
"special_tokens": {ENDOFTEXT: 50256},
}
def p50k_base():
mergeable_ranks = load_tiktoken_bpe(
"https://openaipublic.blob.core.windows.net/encodings/p50k_base.tiktoken",
expected_hash="94b5ca7dff4d00767bc256fdd1b27e5b17361d7b8a5f968547f9f23eb70d2069",
)
return {
"name": "p50k_base",
"explicit_n_vocab": 50281,
"pat_str": r50k_pat_str,
"mergeable_ranks": mergeable_ranks,
"special_tokens": {ENDOFTEXT: 50256},
}
def p50k_edit():
mergeable_ranks = load_tiktoken_bpe(
"https://openaipublic.blob.core.windows.net/encodings/p50k_base.tiktoken",
expected_hash="94b5ca7dff4d00767bc256fdd1b27e5b17361d7b8a5f968547f9f23eb70d2069",
)
special_tokens = {ENDOFTEXT: 50256, FIM_PREFIX: 50281, FIM_MIDDLE: 50282, FIM_SUFFIX: 50283}
return {
"name": "p50k_edit",
"pat_str": r50k_pat_str,
"mergeable_ranks": mergeable_ranks,
"special_tokens": special_tokens,
}
def cl100k_base():
mergeable_ranks = load_tiktoken_bpe(
"https://openaipublic.blob.core.windows.net/encodings/cl100k_base.tiktoken",
expected_hash="223921b76ee99bde995b7ff738513eef100fb51d18c93597a113bcffe865b2a7",
)
special_tokens = {
ENDOFTEXT: 100257,
FIM_PREFIX: 100258,
FIM_MIDDLE: 100259,
FIM_SUFFIX: 100260,
ENDOFPROMPT: 100276,
}
return {
"name": "cl100k_base",
"pat_str": r"""'(?i:[sdmt]|ll|ve|re)|[^\r\n\p{L}\p{N}]?+\p{L}++|\p{N}{1,3}+| ?[^\s\p{L}\p{N}]++[\r\n]*+|\s++$|\s*[\r\n]|\s+(?!\S)|\s""",
"mergeable_ranks": mergeable_ranks,
"special_tokens": special_tokens,
}
def o200k_base():
mergeable_ranks = load_tiktoken_bpe(
"https://openaipublic.blob.core.windows.net/encodings/o200k_base.tiktoken",
expected_hash="446a9538cb6c348e3516120d7c08b09f57c36495e2acfffe59a5bf8b0cfb1a2d",
)
special_tokens = {ENDOFTEXT: 199999, ENDOFPROMPT: 200018}
# This regex could be made more efficient. If I was the one working on this encoding, I would
# have done a few other things differently too, e.g. I think you can allocate tokens more
# efficiently across languages.
pat_str = "|".join(
[
r"""[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?""",
r"""[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?""",
r"""\p{N}{1,3}""",
r""" ?[^\s\p{L}\p{N}]+[\r\n/]*""",
r"""\s*[\r\n]+""",
r"""\s+(?!\S)""",
r"""\s+""",
]
)
return {
"name": "o200k_base",
"pat_str": pat_str,
"mergeable_ranks": mergeable_ranks,
"special_tokens": special_tokens,
}
def o200k_harmony():
base_enc = o200k_base()
name = "o200k_harmony"
pat_str = base_enc["pat_str"]
mergeable_ranks = base_enc["mergeable_ranks"]
special_tokens = {
**base_enc["special_tokens"],
"<|startoftext|>": 199998,
"<|endoftext|>": 199999,
"<|reserved_200000|>": 200000,
"<|reserved_200001|>": 200001,
"<|return|>": 200002,
"<|constrain|>": 200003,
"<|reserved_200004|>": 200004,
"<|channel|>": 200005,
"<|start|>": 200006,
"<|end|>": 200007,
"<|message|>": 200008,
"<|reserved_200009|>": 200009,
"<|reserved_200010|>": 200010,
"<|reserved_200011|>": 200011,
"<|call|>": 200012,
} | {f"<|reserved_{i}|>": i for i in range(200013, 201088)}
return {
"name": name,
"pat_str": pat_str,
"mergeable_ranks": mergeable_ranks,
"special_tokens": special_tokens,
}
ENCODING_CONSTRUCTORS = {
"gpt2": gpt2,
"r50k_base": r50k_base,
"p50k_base": p50k_base,
"p50k_edit": p50k_edit,
"cl100k_base": cl100k_base,
"o200k_base": o200k_base,
"o200k_harmony": o200k_harmony,
}
|