1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
/*
* This file is a part of TiledArray.
* Copyright (C) 2013 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <iostream>
#include <tiledarray.h>
int main(int argc, char** argv) {
// Initialize runtime
TiledArray::World& world = TiledArray::initialize(argc, argv);
// Get command line arguments
if(argc < 2) {
std::cout << "Usage: ta_dense row_size row_block_size col_size col_block_size [repetitions]\n";
return 0;
}
const long row_size = atol(argv[1]);
const long row_block_size = atol(argv[2]);
const long col_size = atol(argv[3]);
const long col_block_size = atol(argv[4]);
if (row_size <= 0 || col_size <= 0) {
std::cerr << "Error: dimensions must be greater than zero.\n";
return 1;
}
if (row_block_size <= 0 || col_block_size <= 0) {
std::cerr << "Error: block sizes must be greater than zero.\n";
return 1;
}
if((row_size % row_block_size) != 0ul || col_size % col_block_size !=0ul) {
std::cerr << "Error: diminsion size must be evenly divisible by block size.\n";
return 1;
}
const long repeat = (argc >= 6 ? atol(argv[5]) : 5);
if (repeat <= 0) {
std::cerr << "Error: number of repetitions must be greater than zero.\n";
return 1;
}
const std::size_t row_blocks = row_size / row_block_size;
const std::size_t col_blocks = col_size / col_block_size;
const std::size_t block_count = row_blocks * col_blocks;
// const std::size_t matrix_size = row_size * col_size;
if(world.rank() == 0)
std::cout << "TiledArray: dense matrix multiply test...\n"
<< "Number of nodes = " << world.size()
<< "\nMatrix size = " << row_size << "x" << col_size
<< "\nBlock size = " << row_block_size << "x" << col_block_size
<< "\nMemory per matrix = " << double(row_size * col_size * sizeof(double)) / 1.0e9
<< " GB\nNumber of blocks = " << block_count
<< "\nAverage blocks/node = " << double(block_count) / double(world.size()) << "\n";
// Construct TiledRange
std::vector<unsigned int> blocking_row;
blocking_row.reserve(row_blocks + 1);
for(long i = 0l; i <= row_size; i += row_block_size)
blocking_row.push_back(i);
std::vector<unsigned int> blocking_col;
blocking_col.reserve(col_blocks + 1);
for(long i = 0l; i <= col_size; i += col_block_size)
blocking_col.push_back(i);
// Stucture of c
std::vector<TiledArray::TiledRange1> blocking_result;
blocking_result.reserve(2);
blocking_result.push_back(TiledArray::TiledRange1(blocking_row.begin(),blocking_row.end()));
blocking_result.push_back(TiledArray::TiledRange1(blocking_row.begin(), blocking_row.end()));
// Strucure of a
std::vector<TiledArray::TiledRange1> blocking_rowxcol;
blocking_rowxcol.reserve(2);
blocking_rowxcol.push_back(TiledArray::TiledRange1(blocking_row.begin(),blocking_row.end()));
blocking_rowxcol.push_back(TiledArray::TiledRange1(blocking_col.begin(), blocking_col.end()));
// Structure of b
std::vector<TiledArray::TiledRange1> blocking_colxrow;
blocking_colxrow.reserve(2);
blocking_rowxcol.push_back(TiledArray::TiledRange1(blocking_col.begin(),blocking_col.end()));
blocking_rowxcol.push_back(TiledArray::TiledRange1(blocking_row.begin(), blocking_row.end()));
TiledArray::TiledRange // TRange for c
trange(blocking_result.begin(), blocking_result.end());
TiledArray::TiledRange // TRange for a
trange_a(blocking_rowxcol.begin(), blocking_rowxcol.end());
TiledArray::TiledRange // TRange for b
trange_b(blocking_colxrow.begin(), blocking_colxrow.end());
// Construct and initialize arrays
TiledArray::TArrayD a(world, trange_a);
TiledArray::TArrayD b(world, trange_b);
TiledArray::TArrayD c(world, trange);
a.fill(1.0);
b.fill(1.0);
// Start clock
world.gop.fence();
const double wall_time_start = madness::wall_time();
// Do matrix multiplication
for(int i = 0; i < repeat; ++i) {
c("m,n") = a("m,k") * b("k,n");
world.gop.fence();
if(world.rank() == 0)
std::cout << "Iteration " << i + 1 << "\n";
}
// Stop clock
const double wall_time_stop = madness::wall_time();
if(world.rank() == 0)
std::cout << "Average wall time = " << (wall_time_stop - wall_time_start) / double(repeat)
<< " sec\nAverage GFLOPS = " << double(repeat) * 2.0 * double(col_size *
row_size * row_size) / (wall_time_stop - wall_time_start) / 1.0e9 << "\n";
TiledArray::finalize();
return 0;
}
|