1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
|
/*
* This file is a part of TiledArray.
* Copyright (C) 2013 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <iostream>
#include <tiledarray.h>
bool to_bool(const char* str) {
if (not strcmp(str,"0") ||
not strcmp(str,"no") ||
not strcmp(str,"false"))
return false;
if (not strcmp(str,"1") ||
not strcmp(str,"yes") ||
not strcmp(str,"true"))
return true;
throw std::runtime_error("unrecognized string specification of bool");
}
// makes tiles of fluctuating sizes
// if n = average tile size
// this will produce tiles of these sizes: n+1, n-1, n+2, n-2, etc.
// the last tile absorbs the remainder
std::vector<unsigned int>
make_tiling(unsigned int range_size,
unsigned int ntiles) {
const auto average_tile_size = range_size / ntiles;
TA_ASSERT(average_tile_size > ntiles);
std::vector<unsigned int> result(ntiles+1);
result[0] = 0;
for(long t=0; t!=ntiles-1; ++t) {
result[t+1] = result[t] + average_tile_size + ((t%2==0)?(t+1):(-t));
}
result[ntiles] = range_size;
return result;
}
// low-level evaluation of tv(i1,i2,v3,v4) = t(o1,o2,v1,v2) * v(v1,v2,v3,v4)
// as an explicit SUMMA
// can be extended to handle permutations, etc.
template <typename Tile, typename Policy>
void tensor_contract_444(TA::DistArray<Tile, Policy>& tv,
const TA::DistArray<Tile, Policy>& t,
const TA::DistArray<Tile, Policy>& v);
template <typename Tile, typename Policy>
void rand_fill_array(TA::DistArray<Tile, Policy>& array);
template <typename T>
void cc_abcd(madness::World& world,
const TA::TiledRange1& trange_occ,
const TA::TiledRange1& trange_uocc, long repeat);
int main(int argc, char** argv) {
int rc = 0;
try {
// Initialize runtime
TA::World& world = TA::initialize(argc, argv);
// Get command line arguments
if (argc < 5) {
std::cout << "Mocks t2(i,a,j,b) * v(a,b,c,d) term in CC amplitude eqs"
<< std::endl
<< "Usage: ta_cc_abcd occ_size occ_nblocks uocc_size "
"uocc_nblocks [repetitions] [use_complex]" << std::endl;
return 0;
}
const long n_occ = atol(argv[1]);
const long nblk_occ = atol(argv[2]);
const long n_uocc = atol(argv[3]);
const long nblk_uocc = atol(argv[4]);
if (n_occ <= 0) {
std::cerr << "Error: occ_size must be greater than zero.\n";
return 1;
}
if (nblk_occ <= 0) {
std::cerr << "Error: occ_nblocks must be greater than zero.\n";
return 1;
}
if (n_uocc <= 0) {
std::cerr << "Error: uocc_size must be greater than zero.\n";
return 1;
}
if (nblk_uocc <= 0) {
std::cerr << "Error: uocc_nblocks must be greater than zero.\n";
return 1;
}
if((n_occ < nblk_occ) != 0ul) {
std::cerr << "Error: occ_size must be greater than occ_nblocks.\n";
return 1;
}
if((n_uocc < nblk_uocc) != 0ul) {
std::cerr << "Error: uocc_size must be greater than uocc_nblocks.\n";
return 1;
}
const long repeat = (argc >= 6 ? atol(argv[5]) : 5);
if (repeat <= 0) {
std::cerr << "Error: number of repetitions must be greater than zero.\n";
return 1;
}
const bool use_complex = (argc >= 7 ? to_bool(argv[6]) : false);
if(world.rank() == 0)
std::cout << "TiledArray: CC T2.V term test..."
<< "\nGit HASH: " << TILEDARRAY_REVISION
<< "\nNumber of nodes = " << world.size()
<< "\nocc size = " << n_occ
<< "\nocc nblocks = " << nblk_occ
<< "\nuocc size = " << n_uocc
<< "\nuocc nblocks = " << nblk_uocc
<< "\nComplex = " << (use_complex ? "true" : "false")
<< "\n";
// Construct TiledRange1's
std::vector<unsigned int> tiling_occ = make_tiling(n_occ, nblk_occ);
std::vector<unsigned int> tiling_uocc = make_tiling(n_uocc, nblk_uocc);
auto trange_occ = TA::TiledRange1(tiling_occ.begin(), tiling_occ.end());
auto trange_uocc = TA::TiledRange1(tiling_uocc.begin(), tiling_uocc.end());
if (use_complex)
cc_abcd<std::complex<double>>(world, trange_occ, trange_uocc, repeat);
else
cc_abcd<double>(world, trange_occ, trange_uocc, repeat);
TA::finalize();
} catch(TA::Exception& e) {
std::cerr << "!! TiledArray exception: " << e.what() << "\n";
rc = 1;
} catch(madness::MadnessException& e) {
std::cerr << "!! MADNESS exception: " << e.what() << "\n";
rc = 1;
} catch(SafeMPI::Exception& e) {
std::cerr << "!! SafeMPI exception: " << e.what() << "\n";
rc = 1;
} catch(std::exception& e) {
std::cerr << "!! std exception: " << e.what() << "\n";
rc = 1;
} catch(...) {
std::cerr << "!! exception: unknown exception\n";
rc = 1;
}
return rc;
}
template <typename T>
void cc_abcd(TA::World& world,
const TA::TiledRange1& trange_occ,
const TA::TiledRange1& trange_uocc, long repeat) {
TA::TiledRange trange_oovv(
{trange_occ, trange_occ, trange_uocc, trange_uocc});
TA::TiledRange trange_vvvv(
{trange_uocc, trange_uocc, trange_uocc, trange_uocc});
auto n_occ = trange_occ.extent();
auto n_uocc = trange_uocc.extent();
const auto complex_T = TA::detail::is_complex<T>::value;
const double flops_per_fma =
(complex_T ? 8 : 2); // 1 multiply takes 6/1 flops for complex/real
// 1 add takes 2/1 flops for complex/real
const double n_gflop =
flops_per_fma * std::pow(n_occ, 2) * std::pow(n_uocc, 4) / std::pow(1024.,3);
// Construct tensors
TA::TArrayD t2(world, trange_oovv);
TA::TArrayD v(world, trange_vvvv);
TA::TArrayD t2_v;
// Fill input tensors with random data
rand_fill_array(t2);
rand_fill_array(v);
// Start clock
world.gop.fence();
if (world.rank() == 0)
std::cout << "Starting iterations: "
<< "\n";
double total_time = 0.0;
double total_gflop_rate = 0.0;
// Do matrix multiplication
for (int i = 0; i < repeat; ++i) {
const double start = madness::wall_time();
// this is how the user would express this contraction
if (false)
t2_v("i,j,a,b") = t2("i,j,c,d") * v("a,b,c,d");
// this demonstrates to the PaRSEC team what happens under the hood of the expression above
if (true) {
tensor_contract_444(t2_v, t2, v);
// to validate replace: false -> true
if (false) {
// obtain reference result using the high-level DSL
TA::TArrayD t2_v_ref;
t2_v_ref("i,j,a,b") = t2("i,j,c,d") * v("c,d,a,b");
TA::TArrayD error;
error("i,j,a,b") = t2_v_ref("i,j,a,b") - t2_v("i,j,a,b");
std::cout << "Validating the result (ignore the timings/performance!): ||ref_result - result||_2^2 = " << error("i,j,a,b").squared_norm().get() << std::endl;
}
}
const double stop = madness::wall_time();
const double time = stop - start;
total_time += time;
const double gflop_rate = n_gflop / time;
total_gflop_rate += gflop_rate;
if (world.rank() == 0)
std::cout << "Iteration " << i + 1 << " time=" << time
<< " GFLOPS=" << gflop_rate << "\n";
}
// Print results
if (world.rank() == 0)
std::cout << "Average wall time = "
<< total_time / static_cast<double>(repeat)
<< " sec\nAverage GFLOPS = "
<< total_gflop_rate / static_cast<double>(repeat) << "\n";
}
template <typename LeftTile, typename RightTile, typename Policy, typename Op>
TA::detail::DistEval<typename Op::result_type, Policy> make_contract_eval(
const TA::detail::DistEval<LeftTile, Policy>& left,
const TA::detail::DistEval<RightTile, Policy>& right, madness::World& world,
const typename TA::detail::DistEval<typename Op::result_type,
Policy>::shape_type& shape,
const std::shared_ptr<typename TA::detail::DistEval<
typename Op::result_type, Policy>::pmap_interface>& pmap,
const TA::Permutation& perm, const Op& op) {
TA_ASSERT(left.range().rank() == op.left_rank());
TA_ASSERT(right.range().rank() == op.right_rank());
TA_ASSERT((perm.dim() == op.result_rank()) || !perm);
// Define the impl type
typedef TA::detail::Summa<
TA::detail::DistEval<LeftTile, Policy>,
TA::detail::DistEval<RightTile, Policy>, Op, Policy> impl_type;
// Precompute iteration range data
const unsigned int num_contract_ranks = op.num_contract_ranks();
const unsigned int left_end = op.left_rank();
const unsigned int left_middle = left_end - num_contract_ranks;
const unsigned int right_end = op.right_rank();
// Construct a vector TiledRange1 objects from the left- and right-hand
// arguments that will be used to construct the result TiledRange. Also,
// compute the fused outer dimension sizes, number of tiles and elements,
// for the contraction.
typename impl_type::trange_type::Ranges ranges(op.result_rank());
std::size_t M = 1ul, m = 1ul, N = 1ul, n = 1ul;
std::size_t pi = 0ul;
for(unsigned int i = 0ul; i < left_middle; ++i) {
ranges[(perm ? perm[pi++] : pi++)] = left.trange().data()[i];
M *= left.range().extent_data()[i];
m *= left.trange().elements_range().extent_data()[i];
}
for(std::size_t i = num_contract_ranks; i < right_end; ++i) {
ranges[(perm ? perm[pi++] : pi++)] = right.trange().data()[i];
N *= right.range().extent_data()[i];
n *= right.trange().elements_range().extent_data()[i];
}
// Compute the number of tiles in the inner dimension.
std::size_t K = 1ul;
for(std::size_t i = left_middle; i < left_end; ++i)
K *= left.range().extent_data()[i];
// Construct the result range
typename impl_type::trange_type trange(ranges.begin(), ranges.end());
// Construct the process grid
TA::detail::ProcGrid proc_grid(world, M, N, m, n);
return TA::detail::DistEval<typename Op::result_type, Policy>(
std::shared_ptr<impl_type>( new impl_type(left, right, world, trange,
shape, pmap, perm, op, K, proc_grid)));
}
template <typename Tile, typename Policy, typename Op>
static TA::detail::DistEval<TA::detail::LazyArrayTile<typename TA::DistArray<Tile, Policy>::value_type, Op>, Policy>
make_array_eval(
const TA::DistArray<Tile, Policy>& array,
madness::World& world,
const typename TA::detail::DistEval<Tile, Policy>::shape_type& shape,
const std::shared_ptr<typename TA::detail::DistEval<Tile, Policy>::pmap_interface>& pmap,
const TA::Permutation& perm,
const Op& op)
{
typedef TA::detail::ArrayEvalImpl<TA::DistArray<Tile, Policy>, Op, Policy> impl_type;
return TA::detail::DistEval<TA::detail::LazyArrayTile<typename TA::DistArray<Tile, Policy>::value_type, Op>, Policy>(
std::shared_ptr<impl_type>(new impl_type(array, world,
(perm ? perm * array.trange() : array.trange()), shape, pmap, perm, op)));
}
template<typename Tile>
TA::ContractReduce<Tile, Tile, typename Tile::value_type>
make_contract(const unsigned int result_rank, const unsigned int left_rank,
const unsigned int right_rank, const TA::Permutation& perm = TA::Permutation())
{
return TA::ContractReduce<Tile, Tile, typename Tile::value_type>(
madness::cblas::NoTrans, madness::cblas::NoTrans, 1, result_rank,
left_rank, right_rank, perm);
}
template <typename Tile>
static TA::detail::UnaryWrapper<TA::Noop<Tile, true> >
make_array_noop(const TA::Permutation& perm = TA::Permutation()) {
return TA::detail::UnaryWrapper<TA::Noop<Tile, true> >(
TA::Noop<Tile, true>(), perm);
}
template <typename Tile, typename Policy>
void rand_fill_array(TA::DistArray<Tile, Policy>& array) {
auto& world = array.world();
// Iterate over local, non-zero tiles
for (auto it : array) {
// Construct a new tile with random data
typename TA::DistArray<Tile, Policy>::value_type tile(
array.trange().make_tile_range(it.index()));
for (auto& tile_it : tile) tile_it = world.drand();
// Set array tile
it = tile;
}
}
template <typename Tile, typename Policy>
void tensor_contract_444(TA::DistArray<Tile, Policy>& tv,
const TA::DistArray<Tile, Policy>& t,
const TA::DistArray<Tile, Policy>& v) {
// for convenience, obtain the tiled ranges for the two kinds of dimensions used to define t, v, and tv
auto trange_occ = t.trange().dim(0); // the first dimension of t is occ
auto trange_uocc = v.trange().dim(0); // every dimension of v is uocc
auto ntiles_occ = trange_occ.tile_extent();
auto ntiles_uocc = trange_uocc.tile_extent();
auto n_occ = trange_occ.extent();
auto n_uocc = trange_occ.extent();
typedef TA::Noop<Tile, true> array_base_op_type;
typedef TA::detail::UnaryWrapper<array_base_op_type> array_op_type;
typedef TA::detail::DistEval<TA::detail::LazyArrayTile<Tile, array_op_type>,
TA::DensePolicy> array_eval_type;
// compute the 2-d grid of processors for the SUMMA
// note that the result is (occ occ|uocc uocc), hence the row dimension is occ x occ, etc.
auto& world = t.world();
auto nrowtiles = ntiles_occ * ntiles_occ;
auto ncoltiles = ntiles_uocc * ntiles_uocc;
auto ninttiles = ntiles_uocc * ntiles_uocc; // contraction is over uocc x uocc
auto nrows = n_occ * n_occ;
auto ncols = n_uocc * n_uocc;
TA::detail::ProcGrid proc_grid(world,
nrowtiles, ncoltiles,
nrows, ncols);
std::shared_ptr<TA::Pmap> pmap;
auto t_eval = make_array_eval(t, t.world(), TA::DenseShape(),
proc_grid.make_row_phase_pmap(ninttiles),
TA::Permutation(), make_array_noop<Tile>());
auto v_eval = make_array_eval(v, v.world(), TA::DenseShape(),
proc_grid.make_col_phase_pmap(ninttiles),
TA::Permutation(), make_array_noop<Tile>());
//
// make the result metadata
//
// result shape
TA::TiledRange trange_tv({trange_occ, trange_occ, trange_uocc, trange_uocc});
//
pmap.reset(new TA::detail::BlockedPmap(world, trange_tv.tiles_range().volume()));
// 'contract' object is of type
// PaRSEC's PTG object will do the job here:
// 1. it will use t_eval and v_eval's Futures as input
// 2. there will be a dummy output ArrayEval, its Futures will be set by the PTG
auto contract = make_contract_eval(
t_eval, v_eval, world, TA::DenseShape(), pmap, TA::Permutation(),
make_contract<Tile>(4u, 4u, 4u)
);
// eval() just schedules the Summa task and proceeds
// in expressions evaluation is lazy ... you could just use contract tiles
// immediately to compose further (in principle even before eval()!)
contract.eval();
// since the intent of this function is to return result as a named DistArray
// migrate contract's futures to tv here
// Create a temporary result array
TA::DistArray<Tile,Policy> result(contract.world(), contract.trange(),
contract.shape(), contract.pmap());
// Move the data from dist_eval into the result array. There is no
// communication in this step.
for(const auto index : *contract.pmap()) {
if(! contract.is_zero(index))
result.set(index, contract.get(index));
}
// uncomment this to block until Summa is complete .. but no need to wait
//contract.wait();
// Swap the new array with the result array object.
result.swap(tv);
}
|