File: ta_cc_abcd.cpp

package info (click to toggle)
tiledarray 0.6.0-5.2
  • links: PTS, VCS
  • area: main
  • in suites: buster, sid
  • size: 5,844 kB
  • sloc: cpp: 31,688; sh: 237; ansic: 227; makefile: 57; python: 12
file content (427 lines) | stat: -rw-r--r-- 16,103 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
/*
 * This file is a part of TiledArray.
 * Copyright (C) 2013  Virginia Tech
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

#include <iostream>
#include <tiledarray.h>

bool to_bool(const char* str) {
  if (not strcmp(str,"0") ||
      not strcmp(str,"no") ||
      not strcmp(str,"false"))
    return false;
  if (not strcmp(str,"1") ||
      not strcmp(str,"yes") ||
      not strcmp(str,"true"))
    return true;
  throw std::runtime_error("unrecognized string specification of bool");
}

// makes tiles of fluctuating sizes
// if n = average tile size
// this will produce tiles of these sizes: n+1, n-1, n+2, n-2, etc.
// the last tile absorbs the remainder
std::vector<unsigned int>
make_tiling(unsigned int range_size,
            unsigned int ntiles) {
  const auto average_tile_size = range_size / ntiles;
  TA_ASSERT(average_tile_size > ntiles);
  std::vector<unsigned int> result(ntiles+1);
  result[0] = 0;
  for(long t=0; t!=ntiles-1; ++t) {
    result[t+1] = result[t] + average_tile_size + ((t%2==0)?(t+1):(-t));
  }
  result[ntiles] = range_size;
  return result;
}

// low-level evaluation of tv(i1,i2,v3,v4) = t(o1,o2,v1,v2) * v(v1,v2,v3,v4)
// as an explicit SUMMA
// can be extended to handle permutations, etc.
template <typename Tile, typename Policy>
void tensor_contract_444(TA::DistArray<Tile, Policy>& tv,
                         const TA::DistArray<Tile, Policy>& t,
                         const TA::DistArray<Tile, Policy>& v);

template <typename Tile, typename Policy>
void rand_fill_array(TA::DistArray<Tile, Policy>& array);

template <typename T>
void cc_abcd(madness::World& world,
             const TA::TiledRange1& trange_occ,
             const TA::TiledRange1& trange_uocc, long repeat);

int main(int argc, char** argv) {
  int rc = 0;

  try {

    // Initialize runtime
    TA::World& world = TA::initialize(argc, argv);

    // Get command line arguments
    if (argc < 5) {
      std::cout << "Mocks t2(i,a,j,b) * v(a,b,c,d) term in CC amplitude eqs"
                << std::endl
                << "Usage: ta_cc_abcd occ_size occ_nblocks uocc_size "
                   "uocc_nblocks [repetitions] [use_complex]" << std::endl;
      return 0;
    }
    const long n_occ = atol(argv[1]);
    const long nblk_occ = atol(argv[2]);
    const long n_uocc = atol(argv[3]);
    const long nblk_uocc = atol(argv[4]);
    if (n_occ <= 0) {
      std::cerr << "Error: occ_size must be greater than zero.\n";
      return 1;
    }
    if (nblk_occ <= 0) {
      std::cerr << "Error: occ_nblocks must be greater than zero.\n";
      return 1;
    }
    if (n_uocc <= 0) {
      std::cerr << "Error: uocc_size must be greater than zero.\n";
      return 1;
    }
    if (nblk_uocc <= 0) {
      std::cerr << "Error: uocc_nblocks must be greater than zero.\n";
      return 1;
    }
    if((n_occ < nblk_occ) != 0ul) {
      std::cerr << "Error: occ_size must be greater than occ_nblocks.\n";
      return 1;
    }
    if((n_uocc < nblk_uocc) != 0ul) {
      std::cerr << "Error: uocc_size must be greater than uocc_nblocks.\n";
      return 1;
    }
    const long repeat = (argc >= 6 ? atol(argv[5]) : 5);
    if (repeat <= 0) {
      std::cerr << "Error: number of repetitions must be greater than zero.\n";
      return 1;
    }
    const bool use_complex = (argc >= 7 ? to_bool(argv[6]) : false);

    if(world.rank() == 0)
      std::cout << "TiledArray: CC T2.V term test..."
                << "\nGit HASH: " << TILEDARRAY_REVISION
                << "\nNumber of nodes     = " << world.size()
                << "\nocc size            = " << n_occ
                << "\nocc nblocks         = " << nblk_occ
                << "\nuocc size           = " << n_uocc
                << "\nuocc nblocks        = " << nblk_uocc
                << "\nComplex             = " << (use_complex ? "true" : "false")
                << "\n";

    // Construct TiledRange1's
    std::vector<unsigned int> tiling_occ = make_tiling(n_occ, nblk_occ);
    std::vector<unsigned int> tiling_uocc = make_tiling(n_uocc, nblk_uocc);
    auto trange_occ = TA::TiledRange1(tiling_occ.begin(), tiling_occ.end());
    auto trange_uocc = TA::TiledRange1(tiling_uocc.begin(), tiling_uocc.end());

    if (use_complex)
      cc_abcd<std::complex<double>>(world, trange_occ, trange_uocc, repeat);
    else
      cc_abcd<double>(world, trange_occ, trange_uocc, repeat);

    TA::finalize();

  } catch(TA::Exception& e) {
    std::cerr << "!! TiledArray exception: " << e.what() << "\n";
    rc = 1;
  } catch(madness::MadnessException& e) {
    std::cerr << "!! MADNESS exception: " << e.what() << "\n";
    rc = 1;
  } catch(SafeMPI::Exception& e) {
    std::cerr << "!! SafeMPI exception: " << e.what() << "\n";
    rc = 1;
  } catch(std::exception& e) {
    std::cerr << "!! std exception: " << e.what() << "\n";
    rc = 1;
  } catch(...) {
    std::cerr << "!! exception: unknown exception\n";
    rc = 1;
  }

  return rc;
}

template <typename T>
void cc_abcd(TA::World& world,
             const TA::TiledRange1& trange_occ,
             const TA::TiledRange1& trange_uocc, long repeat) {

  TA::TiledRange trange_oovv(
      {trange_occ, trange_occ, trange_uocc, trange_uocc});
  TA::TiledRange trange_vvvv(
      {trange_uocc, trange_uocc, trange_uocc, trange_uocc});

  auto n_occ = trange_occ.extent();
  auto n_uocc = trange_uocc.extent();

  const auto complex_T = TA::detail::is_complex<T>::value;
  const double flops_per_fma =
      (complex_T ? 8 : 2);  // 1 multiply takes 6/1 flops for complex/real
                            // 1 add takes 2/1 flops for complex/real
  const double n_gflop =
      flops_per_fma * std::pow(n_occ, 2) * std::pow(n_uocc, 4) / std::pow(1024.,3);

  // Construct tensors
  TA::TArrayD t2(world, trange_oovv);
  TA::TArrayD v(world, trange_vvvv);
  TA::TArrayD t2_v;
  // Fill input tensors with random data
  rand_fill_array(t2);
  rand_fill_array(v);

  // Start clock
  world.gop.fence();
  if (world.rank() == 0)
    std::cout << "Starting iterations: "
              << "\n";

  double total_time = 0.0;
  double total_gflop_rate = 0.0;

  // Do matrix multiplication
  for (int i = 0; i < repeat; ++i) {
    const double start = madness::wall_time();

    // this is how the user would express this contraction
    if (false)
      t2_v("i,j,a,b") = t2("i,j,c,d") * v("a,b,c,d");

    // this demonstrates to the PaRSEC team what happens under the hood of the expression above
    if (true) {
      tensor_contract_444(t2_v, t2, v);

      // to validate replace: false -> true
      if (false) {
        // obtain reference result using the high-level DSL
        TA::TArrayD t2_v_ref;
        t2_v_ref("i,j,a,b") = t2("i,j,c,d") * v("c,d,a,b");
        TA::TArrayD error;
        error("i,j,a,b") = t2_v_ref("i,j,a,b") - t2_v("i,j,a,b");
        std::cout << "Validating the result (ignore the timings/performance!): ||ref_result - result||_2^2 = " << error("i,j,a,b").squared_norm().get() << std::endl;
      }
    }

    const double stop = madness::wall_time();
    const double time = stop - start;
    total_time += time;
    const double gflop_rate = n_gflop / time;
    total_gflop_rate += gflop_rate;
    if (world.rank() == 0)
      std::cout << "Iteration " << i + 1 << "   time=" << time
                << "   GFLOPS=" << gflop_rate << "\n";
  }

  // Print results
  if (world.rank() == 0)
    std::cout << "Average wall time   = "
              << total_time / static_cast<double>(repeat)
              << " sec\nAverage GFLOPS      = "
              << total_gflop_rate / static_cast<double>(repeat) << "\n";
}

template <typename LeftTile, typename RightTile, typename Policy, typename Op>
TA::detail::DistEval<typename Op::result_type, Policy> make_contract_eval(
    const TA::detail::DistEval<LeftTile, Policy>& left,
    const TA::detail::DistEval<RightTile, Policy>& right, madness::World& world,
    const typename TA::detail::DistEval<typename Op::result_type,
                                        Policy>::shape_type& shape,
    const std::shared_ptr<typename TA::detail::DistEval<
        typename Op::result_type, Policy>::pmap_interface>& pmap,
    const TA::Permutation& perm, const Op& op) {
  TA_ASSERT(left.range().rank() == op.left_rank());
  TA_ASSERT(right.range().rank() == op.right_rank());
  TA_ASSERT((perm.dim() == op.result_rank()) || !perm);

  // Define the impl type
  typedef TA::detail::Summa<
      TA::detail::DistEval<LeftTile, Policy>,
      TA::detail::DistEval<RightTile, Policy>, Op, Policy> impl_type;

  // Precompute iteration range data
  const unsigned int num_contract_ranks = op.num_contract_ranks();
  const unsigned int left_end = op.left_rank();
  const unsigned int left_middle = left_end - num_contract_ranks;
  const unsigned int right_end = op.right_rank();

  // Construct a vector TiledRange1 objects from the left- and right-hand
  // arguments that will be used to construct the result TiledRange. Also,
  // compute the fused outer dimension sizes, number of tiles and elements,
  // for the contraction.
  typename impl_type::trange_type::Ranges ranges(op.result_rank());
  std::size_t M = 1ul, m = 1ul, N = 1ul, n = 1ul;
  std::size_t pi = 0ul;
  for(unsigned int i = 0ul; i < left_middle; ++i) {
    ranges[(perm ? perm[pi++] : pi++)] = left.trange().data()[i];
    M *= left.range().extent_data()[i];
    m *= left.trange().elements_range().extent_data()[i];
  }
  for(std::size_t i = num_contract_ranks; i < right_end; ++i) {
    ranges[(perm ? perm[pi++] : pi++)] = right.trange().data()[i];
    N *= right.range().extent_data()[i];
    n *= right.trange().elements_range().extent_data()[i];
  }

  // Compute the number of tiles in the inner dimension.
  std::size_t K = 1ul;
  for(std::size_t i = left_middle; i < left_end; ++i)
    K *= left.range().extent_data()[i];

  // Construct the result range
  typename impl_type::trange_type trange(ranges.begin(), ranges.end());

  // Construct the process grid
  TA::detail::ProcGrid proc_grid(world, M, N, m, n);

  return TA::detail::DistEval<typename Op::result_type, Policy>(
      std::shared_ptr<impl_type>( new impl_type(left, right, world, trange,
      shape, pmap, perm, op, K, proc_grid)));
}

template <typename Tile, typename Policy, typename Op>
static TA::detail::DistEval<TA::detail::LazyArrayTile<typename TA::DistArray<Tile, Policy>::value_type, Op>, Policy>
make_array_eval(
    const TA::DistArray<Tile, Policy>& array,
    madness::World& world,
    const typename TA::detail::DistEval<Tile, Policy>::shape_type& shape,
    const std::shared_ptr<typename TA::detail::DistEval<Tile, Policy>::pmap_interface>& pmap,
    const TA::Permutation& perm,
    const Op& op)
{
  typedef TA::detail::ArrayEvalImpl<TA::DistArray<Tile, Policy>, Op, Policy> impl_type;
  return TA::detail::DistEval<TA::detail::LazyArrayTile<typename TA::DistArray<Tile, Policy>::value_type, Op>, Policy>(
      std::shared_ptr<impl_type>(new impl_type(array, world,
      (perm ? perm * array.trange() : array.trange()), shape, pmap, perm, op)));
}

template<typename Tile>
TA::ContractReduce<Tile, Tile, typename Tile::value_type>
make_contract(const unsigned int result_rank, const unsigned int left_rank,
    const unsigned int right_rank, const TA::Permutation& perm = TA::Permutation())
{
  return TA::ContractReduce<Tile, Tile, typename Tile::value_type>(
      madness::cblas::NoTrans, madness::cblas::NoTrans, 1, result_rank,
      left_rank, right_rank, perm);
}

template <typename Tile>
static TA::detail::UnaryWrapper<TA::Noop<Tile, true> >
make_array_noop(const TA::Permutation& perm = TA::Permutation()) {
  return TA::detail::UnaryWrapper<TA::Noop<Tile, true> >(
      TA::Noop<Tile, true>(), perm);
}

template <typename Tile, typename Policy>
void rand_fill_array(TA::DistArray<Tile, Policy>& array) {
  auto& world = array.world();
  // Iterate over local, non-zero tiles
  for (auto it : array) {
    // Construct a new tile with random data
    typename TA::DistArray<Tile, Policy>::value_type tile(
        array.trange().make_tile_range(it.index()));
    for (auto& tile_it : tile) tile_it = world.drand();

    // Set array tile
    it = tile;
  }
}

template <typename Tile, typename Policy>
void tensor_contract_444(TA::DistArray<Tile, Policy>& tv,
                         const TA::DistArray<Tile, Policy>& t,
                         const TA::DistArray<Tile, Policy>& v) {

  // for convenience, obtain the tiled ranges for the two kinds of dimensions used to define t, v, and tv
  auto trange_occ = t.trange().dim(0);  // the first dimension of t is occ
  auto trange_uocc = v.trange().dim(0); // every dimension of v is uocc
  auto ntiles_occ = trange_occ.tile_extent();
  auto ntiles_uocc = trange_uocc.tile_extent();
  auto n_occ = trange_occ.extent();
  auto n_uocc = trange_occ.extent();

  typedef TA::Noop<Tile, true> array_base_op_type;
  typedef TA::detail::UnaryWrapper<array_base_op_type> array_op_type;
  typedef TA::detail::DistEval<TA::detail::LazyArrayTile<Tile, array_op_type>,
      TA::DensePolicy> array_eval_type;

  // compute the 2-d grid of processors for the SUMMA
  // note that the result is (occ occ|uocc uocc), hence the row dimension is occ x occ, etc.
  auto& world = t.world();
  auto nrowtiles = ntiles_occ * ntiles_occ;
  auto ncoltiles = ntiles_uocc * ntiles_uocc;
  auto ninttiles = ntiles_uocc * ntiles_uocc; // contraction is over uocc x uocc
  auto nrows = n_occ * n_occ;
  auto ncols = n_uocc * n_uocc;
  TA::detail::ProcGrid proc_grid(world,
                                 nrowtiles, ncoltiles,
                                 nrows, ncols);
  std::shared_ptr<TA::Pmap> pmap;
  auto t_eval = make_array_eval(t, t.world(), TA::DenseShape(),
      proc_grid.make_row_phase_pmap(ninttiles),
      TA::Permutation(), make_array_noop<Tile>());
  auto v_eval = make_array_eval(v, v.world(), TA::DenseShape(),
      proc_grid.make_col_phase_pmap(ninttiles),
      TA::Permutation(), make_array_noop<Tile>());

  //
  // make the result metadata
  //

  // result shape
  TA::TiledRange trange_tv({trange_occ, trange_occ, trange_uocc, trange_uocc});
  //
  pmap.reset(new TA::detail::BlockedPmap(world, trange_tv.tiles_range().volume()));
  // 'contract' object is of type
  // PaRSEC's PTG object will do the job here:
  // 1. it will use t_eval and v_eval's Futures as input
  // 2. there will be a dummy output ArrayEval, its Futures will be set by the PTG
  auto contract = make_contract_eval(
      t_eval, v_eval, world, TA::DenseShape(), pmap, TA::Permutation(),
      make_contract<Tile>(4u, 4u, 4u)
      );

  // eval() just schedules the Summa task and proceeds
  // in expressions evaluation is lazy ... you could just use contract tiles
  // immediately to compose further (in principle even before eval()!)
  contract.eval();

  // since the intent of this function is to return result as a named DistArray
  // migrate contract's futures to tv here

  // Create a temporary result array
  TA::DistArray<Tile,Policy> result(contract.world(), contract.trange(),
           contract.shape(), contract.pmap());

  // Move the data from dist_eval into the result array. There is no
  // communication in this step.
  for(const auto index : *contract.pmap()) {
    if(! contract.is_zero(index))
      result.set(index, contract.get(index));
  }

  // uncomment this to block until Summa is complete .. but no need to wait
  //contract.wait();

  // Swap the new array with the result array object.
  result.swap(tv);

}