1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
/*
* This file is a part of TiledArray.
* Copyright (C) 2013 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <iostream>
#include <tiledarray.h>
template <typename it, typename tiletype>
void random_tile_task(it iter, tiletype tile){
std::size_t size = tile.size();
std::generate(tile.data(), tile.data()+size, []{return std::rand()%100;});
*iter = tile;
}
TiledArray::TArrayD
make_random_array(TiledArray::World &world, TiledArray::TiledRange &trange){
TiledArray::TArrayD array(world, trange);
typename TiledArray::TArrayD::iterator it = array.begin();
for(; it != array.end(); ++it){
typename TiledArray::TArrayD::value_type tile(
array.trange().make_tile_range(it.ordinal()));
world.taskq.add(&random_tile_task<decltype(it), decltype(tile)>, it, tile);
}
return array;
}
int main(int argc, char** argv) {
// Initialize runtime
TiledArray::World& world = TiledArray::initialize(argc, argv);
elem::Grid grid(elem::DefaultGrid().Comm());
// Get command line arguments
if(argc < 2) {
std::cout << "Usage: ta_dense matrix_size block_size [repetitions]\n";
return 0;
}
const long matrix_size = atol(argv[1]);
const long block_size = atol(argv[2]);
if (matrix_size <= 0) {
std::cerr << "Error: matrix size must be greater than zero.\n";
return 1;
}
if (block_size <= 0) {
std::cerr << "Error: block size must be greater than zero.\n";
return 1;
}
if((matrix_size % block_size) != 0ul) {
std::cerr << "Error: matrix size must be evenly divisible by block size.\n";
return 1;
}
const long repeat = (argc >= 4 ? atol(argv[3]) : 5);
if (repeat <= 0) {
std::cerr << "Error: number of repetitions must be greater than zero.\n";
return 1;
}
const std::size_t num_blocks = matrix_size / block_size;
const std::size_t block_count = num_blocks * num_blocks;
if(world.rank() == 0)
std::cout << "TiledArray: dense matrix multiply test...\n"
<< "Number of nodes = " << world.size()
<< "\nMatrix size = " << matrix_size << "x" << matrix_size
<< "\nBlock size = " << block_size << "x" << block_size
<< "\nMemory per matrix = " << double(matrix_size * matrix_size * sizeof(double)) / 1.0e9
<< " GB\nNumber of blocks = " << block_count
<< "\nAverage blocks/node = " << double(block_count) / double(world.size()) << "\n";
// Construct TiledRange
std::vector<unsigned int> blocking;
blocking.reserve(num_blocks + 1);
for(std::size_t i = 0; i <= matrix_size; i += block_size)
blocking.push_back(i);
std::vector<TiledArray::TiledRange1> blocking2(2,
TiledArray::TiledRange1(blocking.begin(), blocking.end()));
TiledArray::TiledRange
trange(blocking2.begin(), blocking2.end());
// Construct and initialize arrays
TiledArray::TArrayD a = make_random_array(world, trange);
TiledArray::TArrayD b = make_random_array(world, trange);
TiledArray::TArrayD c(world, trange);
if(world.rank() == 0 && matrix_size < 11){
std::cout << "a = \n" << a << std::endl;
std::cout << "b = \n" << b << std::endl;
}
// Start clock
world.gop.fence();
const double wall_time_start = madness::wall_time();
// Do matrix multiplication
for(int i = 0; i < repeat; ++i) {
c("m,n") = a("m,k") * b("k,n");
world.gop.fence();
if(world.rank() == 0)
std::cout << "Iteration " << i + 1 << "\n";
}
// Stop clock
const double wall_time_stop = madness::wall_time();
if(world.rank() == 0){
std::cout << "Average wall time = " << (wall_time_stop - wall_time_start) / double(repeat)
<< " sec\nAverage GFLOPS = " << double(repeat) * 2.0 * double(matrix_size *
matrix_size * matrix_size) / (wall_time_stop - wall_time_start) / 1.0e9 << "\n" << std::endl;
}
// Copying matrices to elemental
elem::DistMatrix<double> a_elem = array_to_elem(a,grid);
elem::DistMatrix<double> b_elem = array_to_elem(b,grid);
elem::mpi::Barrier(grid.Comm());
if(matrix_size < 11){
Print(a_elem, "a from elem");
Print(b_elem, "b from elem");
}
// Timed copy
const double wall_time_copy0 = madness::wall_time();
int j = 0;
while(j++ < repeat){
a_elem = array_to_elem(a,grid);
b_elem = array_to_elem(b,grid);
elem::mpi::Barrier(grid.Comm());
}
const double wall_time_copy1 = madness::wall_time();
// How long the copy took
if(world.rank() == 0){
std::cout << "Spent " <<
(wall_time_copy1 - wall_time_copy0)/(2.0 * double(repeat)) <<
" s for an array copy to elemental on average.\n" << std::endl;
}
// Make the data output array
elem::DistMatrix<double> c_elem(matrix_size, matrix_size, grid);
elem::Zero(c_elem);
elem::mpi::Barrier(grid.Comm());
// Do the multiply
const double wt_elem_start = madness::wall_time();
for(std::size_t i = 0; i < repeat; ++i){
elem::Gemm(elem::NORMAL, elem::NORMAL, 1., a_elem, b_elem, 0., c_elem);
elem::mpi::Barrier(grid.Comm());
if(grid.Rank() == 0){
std::cout << "Elem Iteration " << i + 1 << "\n";
}
}
const double wt_elem_end = madness::wall_time();
// Time elemental
if(world.rank() == 0){
std::cout << "Average Elemental wall time = " << (wt_elem_end - wt_elem_start) / double(repeat)
<< " sec\nAverage GFLOPS = " << double(repeat) * 2.0 * double(matrix_size *
matrix_size * matrix_size) / (wt_elem_end - wt_elem_start) / 1.0e9 << "\n";
}
// copy back to ta
int i = 0;
const double e_to_t_start = madness::wall_time();
while(i++ < repeat){
TiledArray::elem_to_array(c, c_elem);
elem::mpi::Barrier(grid.Comm());
}
const double e_to_t_end = madness::wall_time();
if(world.rank() == 0){
std::cout << "Copying to TA from Elemental took " << (e_to_t_end - e_to_t_start)/(double(repeat)) << " s on average." << std::endl;
}
TiledArray::finalize();
return 0;
}
|