File: ta_elem_dense.cpp

package info (click to toggle)
tiledarray 0.6.0-5.2
  • links: PTS, VCS
  • area: main
  • in suites: buster, sid
  • size: 5,844 kB
  • sloc: cpp: 31,688; sh: 237; ansic: 227; makefile: 57; python: 12
file content (189 lines) | stat: -rw-r--r-- 6,607 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
/*
 * This file is a part of TiledArray.
 * Copyright (C) 2013  Virginia Tech
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

#include <iostream>
#include <tiledarray.h>

template <typename it, typename tiletype>
void random_tile_task(it iter, tiletype tile){
  std::size_t size = tile.size();
  std::generate(tile.data(), tile.data()+size, []{return std::rand()%100;});
  *iter = tile;
}

TiledArray::TArrayD
make_random_array(TiledArray::World &world, TiledArray::TiledRange &trange){
  TiledArray::TArrayD array(world, trange);
  typename TiledArray::TArrayD::iterator it = array.begin();
  for(; it != array.end(); ++it){
    typename TiledArray::TArrayD::value_type tile(
                                array.trange().make_tile_range(it.ordinal()));
    world.taskq.add(&random_tile_task<decltype(it), decltype(tile)>, it, tile);
  }
  return array;
}

int main(int argc, char** argv) {
  // Initialize runtime
  TiledArray::World& world = TiledArray::initialize(argc, argv);
  elem::Grid grid(elem::DefaultGrid().Comm());

  // Get command line arguments
  if(argc < 2) {
    std::cout << "Usage: ta_dense matrix_size block_size [repetitions]\n";
    return 0;
  }
  const long matrix_size = atol(argv[1]);
  const long block_size = atol(argv[2]);
  if (matrix_size <= 0) {
    std::cerr << "Error: matrix size must be greater than zero.\n";
    return 1;
  }
  if (block_size <= 0) {
    std::cerr << "Error: block size must be greater than zero.\n";
    return 1;
  }
  if((matrix_size % block_size) != 0ul) {
    std::cerr << "Error: matrix size must be evenly divisible by block size.\n";
    return 1;
  }
  const long repeat = (argc >= 4 ? atol(argv[3]) : 5);
  if (repeat <= 0) {
    std::cerr << "Error: number of repetitions must be greater than zero.\n";
    return 1;
  }

  const std::size_t num_blocks = matrix_size / block_size;
  const std::size_t block_count = num_blocks * num_blocks;

  if(world.rank() == 0)
    std::cout << "TiledArray: dense matrix multiply test...\n"
              << "Number of nodes     = " << world.size()
              << "\nMatrix size         = " << matrix_size << "x" << matrix_size
              << "\nBlock size          = " << block_size << "x" << block_size
              << "\nMemory per matrix   = " << double(matrix_size * matrix_size * sizeof(double)) / 1.0e9
              << " GB\nNumber of blocks    = " << block_count
              << "\nAverage blocks/node = " << double(block_count) / double(world.size()) << "\n";

  // Construct TiledRange
  std::vector<unsigned int> blocking;
  blocking.reserve(num_blocks + 1);
  for(std::size_t i = 0; i <= matrix_size; i += block_size)
    blocking.push_back(i);

  std::vector<TiledArray::TiledRange1> blocking2(2,
      TiledArray::TiledRange1(blocking.begin(), blocking.end()));

  TiledArray::TiledRange
    trange(blocking2.begin(), blocking2.end());

  // Construct and initialize arrays
  TiledArray::TArrayD a = make_random_array(world, trange);
  TiledArray::TArrayD b = make_random_array(world, trange);
  TiledArray::TArrayD c(world, trange);
  if(world.rank() == 0 && matrix_size < 11){
    std::cout << "a = \n" << a << std::endl;
    std::cout << "b = \n" << b << std::endl;
  }

  // Start clock
  world.gop.fence();
  const double wall_time_start = madness::wall_time();

  // Do matrix multiplication
  for(int i = 0; i < repeat; ++i) {
    c("m,n") = a("m,k") * b("k,n");
    world.gop.fence();
    if(world.rank() == 0)
      std::cout << "Iteration " << i + 1 << "\n";
  }
  // Stop clock
  const double wall_time_stop = madness::wall_time();

  if(world.rank() == 0){
    std::cout << "Average wall time   = " << (wall_time_stop - wall_time_start) / double(repeat)
        << " sec\nAverage GFLOPS      = " << double(repeat) * 2.0 * double(matrix_size *
            matrix_size * matrix_size) / (wall_time_stop - wall_time_start) / 1.0e9 << "\n" << std::endl;
  }

  // Copying matrices to elemental
  elem::DistMatrix<double> a_elem = array_to_elem(a,grid);
  elem::DistMatrix<double> b_elem = array_to_elem(b,grid);
  elem::mpi::Barrier(grid.Comm());
  if(matrix_size < 11){
    Print(a_elem, "a from elem");
    Print(b_elem, "b from elem");
  }

  // Timed copy
  const double wall_time_copy0 = madness::wall_time();
  int j = 0;
  while(j++ < repeat){
    a_elem = array_to_elem(a,grid);
    b_elem = array_to_elem(b,grid);
    elem::mpi::Barrier(grid.Comm());
  }
  const double wall_time_copy1 = madness::wall_time();

  // How long the copy took
  if(world.rank() == 0){
    std::cout << "Spent " <<
      (wall_time_copy1 - wall_time_copy0)/(2.0 * double(repeat)) <<
      " s for an array copy to elemental on average.\n" << std::endl;
  }

  // Make the data output array
  elem::DistMatrix<double> c_elem(matrix_size, matrix_size, grid);
  elem::Zero(c_elem);
  elem::mpi::Barrier(grid.Comm());

  // Do the multiply
  const double wt_elem_start = madness::wall_time();
  for(std::size_t i = 0; i < repeat; ++i){
    elem::Gemm(elem::NORMAL, elem::NORMAL, 1., a_elem, b_elem, 0., c_elem);
    elem::mpi::Barrier(grid.Comm());
    if(grid.Rank() == 0){
      std::cout << "Elem Iteration " << i + 1 << "\n";
    }
  }
  const double wt_elem_end = madness::wall_time();

  // Time elemental
  if(world.rank() == 0){
    std::cout << "Average Elemental wall time   = " << (wt_elem_end - wt_elem_start) / double(repeat)
        << " sec\nAverage GFLOPS      = " << double(repeat) * 2.0 * double(matrix_size *
            matrix_size * matrix_size) / (wt_elem_end - wt_elem_start) / 1.0e9 << "\n";
  }

  // copy back to ta
  int i = 0;
  const double e_to_t_start = madness::wall_time();
  while(i++ < repeat){
    TiledArray::elem_to_array(c, c_elem);
    elem::mpi::Barrier(grid.Comm());
  }
  const double e_to_t_end = madness::wall_time();

  if(world.rank() == 0){
    std::cout << "Copying to TA from Elemental took " << (e_to_t_end - e_to_t_start)/(double(repeat)) << " s on average." << std::endl;
  }

  TiledArray::finalize();
  return 0;
}