1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
/*
* This file is a part of TiledArray.
* Copyright (C) 2013 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <iostream>
#include <time.h> // for time
#include <tiledarray.h>
#include <iomanip>
void print_results(const TiledArray::World& world, const std::vector<std::vector<double> >& results) {
for(unsigned int i = 0; i < results.size(); ++i) {
if(i == 0) {
std::cout << " ";
for(unsigned int j = 10; j <= 100; j+=10)
std::cout << std::setw(10) << j;
std::cout << std::endl;
}
for(unsigned int j = 0; j < results[i].size(); ++j) {
if(j == 0)
std::cout << std::setw(3) << (i+1) * 10 << "|";
std::cout.precision(6);
std::cout << std::setw(9) << double(results[i][j]) << " ";
}
std::cout << std::endl;
}
}
int main(int argc, char** argv) {
int rc = 0;
try {
// Initialize runtime
TiledArray::World& world = TiledArray::initialize(argc, argv);
// Get command line arguments
if(argc < 2) {
std::cout << "Usage: ta_sparse matrix_size block_size [repetitions]\n";
return 0;
}
const long matrix_size = atol(argv[1]);
const long block_size = atol(argv[2]);
if(matrix_size <= 0) {
std::cerr << "Error: matrix size must be greater than zero.\n";
return 1;
}
if(block_size <= 0) {
std::cerr << "Error: block size must be greater than zero.\n";
return 1;
}
if((matrix_size % block_size) != 0ul) {
std::cerr << "Error: matrix size must be evenly divisible by block size.\n";
return 1;
}
const long repeat = (argc >= 4 ? atol(argv[3]) : 4);
if(repeat <= 0) {
std::cerr << "Error: number of repetitions must be greater than zero.\n";
return 1;
}
// Print information about the test
const std::size_t num_blocks = matrix_size / block_size;
const double app_flop = 2.0 * matrix_size * matrix_size * matrix_size;
std::vector<std::vector<double> > gflops;
std::vector<std::vector<double> > times;
std::vector<std::vector<double> > app_gflops;
if(world.rank() == 0)
std::cout << "TiledArray: block-sparse matrix multiply test..."
<< "\nGit HASH: " << TILEDARRAY_REVISION
<< "\nNumber of nodes = " << world.size()
<< "\nMatrix size = " << matrix_size << "x" << matrix_size
<< "\nBlock size = " << block_size << "x" << block_size;
// Construct TiledRange
std::vector<unsigned int> blocking;
blocking.reserve(num_blocks + 1);
for(long i = 0l; i <= matrix_size; i += block_size)
blocking.push_back(i);
std::vector<TiledArray::TiledRange1> blocking2(2,
TiledArray::TiledRange1(blocking.begin(), blocking.end()));
TiledArray::TiledRange
trange(blocking2.begin(), blocking2.end());
TiledArray::SparseShape<float> forced_shape;
for(unsigned int left_sparsity = 10; left_sparsity <= 100; left_sparsity += 10){
std::vector<double> inner_gflops, inner_times, inner_app_gflops;
for(unsigned int right_sparsity = 10; right_sparsity <= left_sparsity; right_sparsity += 10){
const long l_block_count = (double(left_sparsity) / 100.0) * double(num_blocks * num_blocks);
const long r_block_count = (double(right_sparsity) / 100.0) * double(num_blocks * num_blocks);
if(world.rank() == 0)
std::cout << "\nMemory per left matrix = " << double(l_block_count * block_size * block_size * sizeof(double)) / 1.0e9 << " GB"
<< "\nMemory per right matrix = " << double(r_block_count * block_size * block_size * sizeof(double)) / 1.0e9 << " GB"
<< "\nNumber of left blocks = " << l_block_count << " " << 100.0 * double(l_block_count) / double(num_blocks * num_blocks) << "%"
<< "\nNumber of right blocks = " << r_block_count << " " << 100.0 * double(r_block_count) / double(num_blocks * num_blocks) << "%"
<< "\nAverage left blocks/node = " << double(l_block_count) / double(world.size())
<< "\nAverage right blocks/node = " << double(r_block_count) / double(world.size()) << "\n";
// Construct shape
TiledArray::Tensor<float>
a_tile_norms(trange.tiles_range(), 0.0),
b_tile_norms(trange.tiles_range(), 0.0);
if(world.rank() == 0) {
world.srand(time(NULL));
for(long count = 0l; count < l_block_count; ++count) {
std::size_t index = world.rand() % trange.tiles_range().volume();
// Avoid setting the same tile to non-zero.
while(a_tile_norms[index] > TiledArray::SparseShape<float>::threshold())
index = world.rand() % trange.tiles_range().volume();
a_tile_norms[index] = std::sqrt(float(block_size * block_size));
}
for(long count = 0l; count < r_block_count; ++count) {
std::size_t index = world.rand() % trange.tiles_range().volume();
// Avoid setting the same tile to non-zero.
while(b_tile_norms[index] > TiledArray::SparseShape<float>::threshold())
index = world.rand() % trange.tiles_range().volume();
b_tile_norms[index] = std::sqrt(float(block_size * block_size));
}
}
TiledArray::SparseShape<float>
a_shape(world, a_tile_norms, trange),
b_shape(world, b_tile_norms, trange);
if(left_sparsity == 10){
forced_shape = a_shape;
}
// Construct and initialize arrays
TiledArray::TSpArrayD a(world, trange, a_shape);
TiledArray::TSpArrayD b(world, trange, b_shape);
TiledArray::TSpArrayD c;
a.fill(1.0);
b.fill(1.0);
// Start clock
TiledArray::TSpArrayD::wait_for_lazy_cleanup(world);
world.gop.fence();
if(world.rank() == 0)
std::cout << "Starting iterations:\n";
double total_time = 0.0, flop = 0.0;
// Do matrix multiplication
try {
for(int i = 0; i < repeat; ++i) {
const double start = madness::wall_time();
c("m,n") = (a("m,k") * b("k,n")).set_shape(forced_shape);
const double time = madness::wall_time() - start;
total_time += time;
if(flop < 1.0)
flop = 2.0 * c("m,n").sum();
if(world.rank() == 0)
std::cout << "Iteration " << i + 1 << " time=" << time << " GFLOPS="
<< flop / time / 1.0e9 << " apparent GFLOPS=" << app_flop / time / 1.0e9 << "\n";
std::cout << "C sparsity = " << c.shape().sparsity() << "\n";
}
} catch(...) {
if(world.rank() == 0) {
std::stringstream ss;
ss << "left shape = " << a.shape().data() << "\n"
<< "right shape = " << b.shape().data() << "\n";
printf(ss.str().c_str());
}
throw;
}
// Stop clock
inner_gflops.push_back(double(repeat) * flop / total_time / 1.0e9);
inner_times.push_back(total_time / repeat);
inner_app_gflops.push_back(double(repeat) * app_flop / total_time / 1.0e9);
// Print results
if(world.rank() == 0) {
std::cout << "Average wall time = " << total_time / double(repeat)
<< "\nAverage GFLOPS = " << double(repeat) * double(flop) / total_time / 1.0e9
<< "\nAverage apparent GFLOPS = " << double(repeat) * double(app_flop) / total_time / 1.0e9 << "\n";
}
}
gflops.push_back(inner_gflops);
times.push_back(inner_times);
app_gflops.push_back(inner_app_gflops);
}
if(world.rank() == 0) {
std::cout << "\n--------------------------------------------------------------------------------------------------------\nGFLOPS\n";
print_results(world, gflops);
std::cout << "\n--------------------------------------------------------------------------------------------------------\nAverage wall times\n";
print_results(world, times);
std::cout << "\n--------------------------------------------------------------------------------------------------------\nApparent GFLOPS\n";
print_results(world, app_gflops);
}
TiledArray::finalize();
} catch(TiledArray::Exception& e) {
std::cerr << "!! TiledArray exception: " << e.what() << "\n";
rc = 1;
} catch(madness::MadnessException& e) {
std::cerr << "!! MADNESS exception: " << e.what() << "\n";
rc = 1;
} catch(SafeMPI::Exception& e) {
std::cerr << "!! SafeMPI exception: " << e.what() << "\n";
rc = 1;
} catch(std::exception& e) {
std::cerr << "!! std exception: " << e.what() << "\n";
rc = 1;
} catch(...) {
std::cerr << "!! exception: unknown exception\n";
rc = 1;
}
return rc;
}
|