File: ta_sparse.cpp

package info (click to toggle)
tiledarray 0.6.0-5.2
  • links: PTS, VCS
  • area: main
  • in suites: buster, sid
  • size: 5,844 kB
  • sloc: cpp: 31,688; sh: 237; ansic: 227; makefile: 57; python: 12
file content (240 lines) | stat: -rw-r--r-- 9,531 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
/*
 * This file is a part of TiledArray.
 * Copyright (C) 2013  Virginia Tech
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

#include <iostream>
#include <time.h> // for time
#include <tiledarray.h>
#include <iomanip>

void print_results(const TiledArray::World& world, const std::vector<std::vector<double> >& results) {
  for(unsigned int i = 0; i < results.size(); ++i) {
    if(i == 0) {
      std::cout << "   ";
      for(unsigned int j = 10; j <= 100; j+=10)
        std::cout << std::setw(10) << j;

      std::cout << std::endl;
    }
    for(unsigned int j = 0; j < results[i].size(); ++j) {
      if(j == 0)
        std::cout << std::setw(3) << (i+1) * 10 << "|";

      std::cout.precision(6);
      std::cout << std::setw(9) << double(results[i][j]) << " ";
    }
    std::cout << std::endl;
  }
}

int main(int argc, char** argv) {
  int rc = 0;

  try {
    // Initialize runtime
    TiledArray::World& world = TiledArray::initialize(argc, argv);

    // Get command line arguments
    if(argc < 2) {
      std::cout << "Usage: ta_sparse matrix_size block_size [repetitions]\n";
      return 0;
    }
    const long matrix_size = atol(argv[1]);
    const long block_size = atol(argv[2]);
    if(matrix_size <= 0) {
      std::cerr << "Error: matrix size must be greater than zero.\n";
      return 1;
    }
    if(block_size <= 0) {
      std::cerr << "Error: block size must be greater than zero.\n";
      return 1;
    }
    if((matrix_size % block_size) != 0ul) {
      std::cerr << "Error: matrix size must be evenly divisible by block size.\n";
      return 1;
    }
    const long repeat = (argc >= 4 ? atol(argv[3]) : 4);
    if(repeat <= 0) {
      std::cerr << "Error: number of repetitions must be greater than zero.\n";
      return 1;
    }

    // Print information about the test
    const std::size_t num_blocks = matrix_size / block_size;
    const double app_flop = 2.0 * matrix_size * matrix_size * matrix_size;
    std::vector<std::vector<double> > gflops;
    std::vector<std::vector<double> > times;
    std::vector<std::vector<double> > app_gflops;

    if(world.rank() == 0)
      std::cout << "TiledArray: block-sparse matrix multiply test..."
                << "\nGit HASH: " << TILEDARRAY_REVISION
                << "\nNumber of nodes    = " << world.size()
                << "\nMatrix size        = " << matrix_size << "x" << matrix_size
                << "\nBlock size         = " << block_size << "x" << block_size;


    // Construct TiledRange
    std::vector<unsigned int> blocking;
    blocking.reserve(num_blocks + 1);
    for(long i = 0l; i <= matrix_size; i += block_size)
      blocking.push_back(i);

    std::vector<TiledArray::TiledRange1> blocking2(2,
        TiledArray::TiledRange1(blocking.begin(), blocking.end()));

    TiledArray::TiledRange
      trange(blocking2.begin(), blocking2.end());

    TiledArray::SparseShape<float> forced_shape;
    for(unsigned int left_sparsity = 10; left_sparsity <= 100; left_sparsity += 10){
      std::vector<double> inner_gflops, inner_times, inner_app_gflops;
      for(unsigned int right_sparsity = 10; right_sparsity <= left_sparsity; right_sparsity += 10){
        const long l_block_count = (double(left_sparsity) / 100.0) * double(num_blocks * num_blocks);
        const long r_block_count = (double(right_sparsity) / 100.0) * double(num_blocks * num_blocks);
        if(world.rank() == 0)
                    std::cout << "\nMemory per left matrix  = " << double(l_block_count * block_size * block_size * sizeof(double)) / 1.0e9 << " GB"
                    << "\nMemory per right matrix  = " << double(r_block_count * block_size * block_size * sizeof(double)) / 1.0e9 << " GB"
                    << "\nNumber of left blocks   = " << l_block_count << "   " << 100.0 * double(l_block_count) / double(num_blocks * num_blocks) << "%"
                    << "\nNumber of right blocks   = " << r_block_count << "   " << 100.0 * double(r_block_count) / double(num_blocks * num_blocks) << "%"
                    << "\nAverage left blocks/node = " << double(l_block_count) / double(world.size())
                    << "\nAverage right blocks/node = " << double(r_block_count) / double(world.size()) << "\n";

        // Construct shape
        TiledArray::Tensor<float>
            a_tile_norms(trange.tiles_range(), 0.0),
            b_tile_norms(trange.tiles_range(), 0.0);
        if(world.rank() == 0) {
          world.srand(time(NULL));
          for(long count = 0l; count < l_block_count; ++count) {
            std::size_t index = world.rand() % trange.tiles_range().volume();

            // Avoid setting the same tile to non-zero.
            while(a_tile_norms[index] > TiledArray::SparseShape<float>::threshold())
              index = world.rand() % trange.tiles_range().volume();

            a_tile_norms[index] = std::sqrt(float(block_size * block_size));
          }
          for(long count = 0l; count < r_block_count; ++count) {
            std::size_t index = world.rand() % trange.tiles_range().volume();

            // Avoid setting the same tile to non-zero.
            while(b_tile_norms[index] > TiledArray::SparseShape<float>::threshold())
              index = world.rand() % trange.tiles_range().volume();

            b_tile_norms[index] = std::sqrt(float(block_size * block_size));
          }

        }
        TiledArray::SparseShape<float>
            a_shape(world, a_tile_norms, trange),
            b_shape(world, b_tile_norms, trange);

        if(left_sparsity == 10){
            forced_shape = a_shape;
        }


        // Construct and initialize arrays
        TiledArray::TSpArrayD a(world, trange, a_shape);
        TiledArray::TSpArrayD b(world, trange, b_shape);
        TiledArray::TSpArrayD c;
        a.fill(1.0);
        b.fill(1.0);

        // Start clock
        TiledArray::TSpArrayD::wait_for_lazy_cleanup(world);
        world.gop.fence();
        if(world.rank() == 0)
          std::cout << "Starting iterations:\n";

        double total_time = 0.0, flop = 0.0;

        // Do matrix multiplication
        try {
          for(int i = 0; i < repeat; ++i) {
            const double start = madness::wall_time();
            c("m,n") = (a("m,k") * b("k,n")).set_shape(forced_shape);
            const double time = madness::wall_time() - start;
            total_time += time;
            if(flop < 1.0)
              flop = 2.0 * c("m,n").sum();
            if(world.rank() == 0)
              std::cout << "Iteration " << i + 1 << "   time=" << time << "   GFLOPS="
                  << flop / time / 1.0e9 << "   apparent GFLOPS=" << app_flop / time / 1.0e9 << "\n";
            std::cout << "C sparsity = " << c.shape().sparsity() << "\n";

          }
        } catch(...) {
          if(world.rank() == 0) {
            std::stringstream ss;
            ss << "left shape  = " << a.shape().data() << "\n"
               << "right shape = " << b.shape().data() << "\n";
            printf(ss.str().c_str());
          }
          throw;
        }

        // Stop clock
        inner_gflops.push_back(double(repeat) * flop / total_time / 1.0e9);
        inner_times.push_back(total_time / repeat);
        inner_app_gflops.push_back(double(repeat) * app_flop / total_time / 1.0e9);

        // Print results
        if(world.rank() == 0) {
          std::cout << "Average wall time = " << total_time / double(repeat)
              << "\nAverage GFLOPS = " << double(repeat) * double(flop) / total_time / 1.0e9
              << "\nAverage apparent GFLOPS = " << double(repeat) * double(app_flop) / total_time / 1.0e9 << "\n";
        }
      }
      gflops.push_back(inner_gflops);
      times.push_back(inner_times);
      app_gflops.push_back(inner_app_gflops);
    }

    if(world.rank() == 0) {
      std::cout << "\n--------------------------------------------------------------------------------------------------------\nGFLOPS\n";
      print_results(world, gflops);
      std::cout << "\n--------------------------------------------------------------------------------------------------------\nAverage wall times\n";
      print_results(world, times);
      std::cout << "\n--------------------------------------------------------------------------------------------------------\nApparent GFLOPS\n";
      print_results(world, app_gflops);
    }


    TiledArray::finalize();

  } catch(TiledArray::Exception& e) {
    std::cerr << "!! TiledArray exception: " << e.what() << "\n";
    rc = 1;
  } catch(madness::MadnessException& e) {
    std::cerr << "!! MADNESS exception: " << e.what() << "\n";
    rc = 1;
  } catch(SafeMPI::Exception& e) {
    std::cerr << "!! SafeMPI exception: " << e.what() << "\n";
    rc = 1;
  } catch(std::exception& e) {
    std::cerr << "!! std exception: " << e.what() << "\n";
    rc = 1;
  } catch(...) {
    std::cerr << "!! exception: unknown exception\n";
    rc = 1;
  }

  return rc;
}