1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
|
# Customizing DistArray {#Customizing-Arrays}
* [User Defined Tiles](#wiki-user-defined-tiles)
* [Lazy Tiles](#wiki-lazy-tiles)
* [Data Tiles](#wiki-data-tiles)
* [User Defined Shapes](#wiki-ser-defined-shapes)
* [User Defined Process Map](#wiki-user-defined-process-map)
# User Defined Tiles
The default tile type of `TiledArray::DistArray` is `TiledArray::Tensor`. However, TiledArray supports using user-defined types as tiles.
There are few scenarios where one would like to provide a non-standard type as a tile; for example,
user wants to provide a more efficient implementation of certain operations on tiles.
There are two modes of user-defined types that can be used as tiles: types that store the data elements explicitly (“data tiles”)
and types that generate a data tile as needed (“lazy evaluation tiles”).
## User-Defined Data Tiles
Any user-defined tensor type can play a role of a data tile provided it matches the same concept as `TiledArray::Tensor`. For brevity, instead of an actual concept spec here is an example of a custom tile type that meets the concept spec.
```
class MyTensor {
public:
// Typedefs
typedef MyTensor eval_type; // The type used when evaluating expressions
typedef TiledArray::Range range_type; // Tensor range type
typedef ... value_type; // Element type
typedef ... numeric_type; // The scalar type that is compatible with value_type
typedef ... size_type; // Size type
public:
// Default constructors (may be uninitialized)
MyTensor();
// Shallow copy constructor; see MyTensor::clone() for deep copy
MyTensor(const MyTensor& other);
// Shallow assignment operator; see MyTensor::clone() for deep copy
MyTensor& operator=(const MyTensor& other);
// Deep copy
MyTensor clone() const;
// Tile range accessor
const range_type& range() const;
// Number of elements in the tile
size_type size() const;
// Initialization check. False if the tile is fully initialized.
bool empty() const;
// MADNESS-compliant serialization
template <typename Archive>
void serialize(Archive& ar);
// Permutation operation
// result[perm ^ i] = (*this)[i]
MyTensor permute(const TiledArray::Permutation& perm) const;
// Scaling operations
// result[i] = (*this)[i] * factor
MyTensor scale(const numeric_type factor) const;
// result[perm ^ i] = (*this)[i] * factor
MyTensor scale(const numeric_type factor, const TiledArray::Permutation& perm) const;
// (*this)[i] *= factor
MyTensor& scale_to(const numeric_type factor) const;
// Addition operations
// result[i] = (*this)[i] + right[i]
MyTensor add(const MyTensor& right) const;
// result[i] = ((*this)[i] + right[i]) * factor
MyTensor add(const MyTensor& right, const numeric_type factor) const;
// result[i] = (*this)[i] + value
MyTensor add(const value_type& value) const;
// result[perm ^ i] = (*this)[i] + right[i]
MyTensor add(const MyTensor& right, const TiledArray::Permutation& perm) const;
// result[perm ^ i] = ((*this)[i] + right[i]) * factor
MyTensor add(const MyTensor& right, const numeric_type factor, const TiledArray::Permutation& perm) const;
// result[perm ^ i] = (*this)[i] + value
MyTensor add(const value_type& value, const TiledArray::Permutation& perm) const;
// (*this)[i] += right[i]
MyTensor& add_to(const MyTensor& right) const;
// ((*this)[i] += right[i]) *= factor
MyTensor& add_to(const MyTensor& right, const numeric_type factor) const;
// (*this)[i] += value
MyTensor& add_to(const value_type& value) const;
// Subtraction operations
// result[i] = (*this)[i] - right[i]
MyTensor subt(const MyTensor& right) const;
// result[i] = ((*this)[i] - right[i]) * factor
MyTensor subt(const MyTensor& right, const numeric_type factor) const;
// result[i] = (*this)[i] - value
MyTensor subt(const value_type& value) const;
// result[perm ^ i] = (*this)[i] - right[i]
MyTensor subt(const MyTensor& right, const TiledArray::Permutation& perm) const;
// result[perm ^ i] = ((*this)[i] - right[i]) * factor
MyTensor subt(const MyTensor& right, const numeric_type factor, const TiledArray::Permutation& perm) const;
// result[perm ^ i] = (*this)[i] - value
MyTensor subt(const value_type value, const TiledArray::Permutation& perm) const;
// (*this)[i] -= right[i]
MyTensor& subt_to(const MyTensor& right);
// ((*this)[i] -= right[i]) *= factor
MyTensor& subt_to(const MyTensor& right, const numeric_type factor);
// (*this)[i] -= value
MyTensor& subt_to(const value_type& value);
// (Entrywise) multiplication operations (Hadamard product)
// result[i] = (*this)[i] * right[i]
MyTensor mult(const MyTensor& right) const;
// result[i] = ((*this)[i] * right[i]) * factor
MyTensor mult(const MyTensor& right, const numeric_type factor) const;
// result[perm ^ i] = (*this)[i] * right[i]
MyTensor mult(const MyTensor& right, const TiledArray::Permutation& perm) const;
// result[perm^ i] = ((*this)[i] * right[i]) * factor
MyTensor mult(const MyTensor& right, const numeric_type factor, const TiledArray::Permutation& perm) const;
// *this[i] *= right[i]
MyTensor& mult_to(const MyTensor& right);
// (*this[i] *= right[i]) *= factor
MyTensor& mult_to(const MyTensor& right, const numeric_type factor);
// Negation operations
// result[i] = -((*this)[i])
MyTensor neg() const;
// result[perm ^ i] = -((*this)[i])
MyTensor neg(const TiledArray::Permutation& perm) const;
// arg[i] = -((*this)[i])
MyTensor& neg_to();
// Contraction operations
// GEMM operation with fused indices as defined by gemm_config; multiply this by other, return the result
MyTensor gemm(const MyTensor& other, const numeric_type factor,
const TiledArray::math::GemmHelper& gemm_config) const;
// GEMM operation with fused indices as defined by gemm_config; multiply left by right, store to this
MyTensor& gemm(const MyTensor& left, const MyTensor& right, const numeric_type factor,
const TiledArray::math::GemmHelper& gemm_config);
// Reduction operations
// Sum of hyper diagonal elements
numeric_type trace() const;
// foreach(i) result += arg[i]
numeric_type sum() const;
// foreach(i) result *= arg[i]
numeric_type product() const;
// foreach(i) result += arg[i] * arg[i]
numeric_type squared_norm() const;
// sqrt(squared_norm(arg))
numeric_type norm() const;
// foreach(i) result = max(result, arg[i])
numeric_type max() const;
// foreach(i) result = min(result, arg[i])
numeric_type min() const;
// foreach(i) result = max(result, abs(arg[i]))
numeric_type abs_max() const;
// foreach(i) result = max(result, abs(arg[i]))
numeric_type abs_min() const;
} // class MyTensor
```
It is also possible to implement most of the concept requirements non-intrusively, by providing free functions. This can be helpful if you want to use an existing tensor class as a tile. Here’s an example of how to implement MyTensor without member functions:
```
class MyTensor {
public:
// Typedefs
typedef TiledArray::Range range_type; // Tensor range type
typedef ... value_type; // Element type
typedef ... numeric_type; // The scalar type that is compatible with value_type
typedef ... size_type; // Size type
public:
// Default constructors (may be uninitialized)
MyTensor();
// Shallow copy constructor; see MyTensor::clone() for deep copy
MyTensor(const MyTensor& other);
// Shallow assignment operator; see MyTensor::clone() for deep copy
MyTensor& operator=(const MyTensor& other);
// Deep copy
MyTensor clone() const;
// Tile range accessor
const range_type& range() const;
// Number of elements in the tile
size_type size() const;
// Initialization check. False if the tile is fully initialized.
bool empty() const;
// MADNESS-compliant serialization
template <typename Archive>
void serialize(Archive& ar);
// Scaling operations
// result[i] = (*this)[i] * factor
MyTensor scale(const numeric_type factor) const;
// result[perm ^ i] = (*this)[i] * factor
MyTensor scale(const numeric_type factor, const TiledArray::Permutation& perm) const;
// (*this)[i] *= factor
MyTensor& scale_to(const numeric_type factor) const;
} // class MyTensor
namespace TiledArray {
// MyTensor is used directly evaluate expressions (see also Lazy Tiles section below)
struct eval_trait<MyTensor> {
typedef MyTensor type;
};
namespace math {
// Permutation operation
// returns a tile for which result[perm ^ i] = tile[i]
MyTensor permute(const MyTensor& tile,
const TiledArray::Permutation& perm);
// Addition operations
// result[i] = arg1[i] + arg2[i]
MyTensor add(const MyTensor& arg1,
const MyTensor& arg2);
// result[i] = (arg1[i] + arg2[i]) * factor
MyTensor add(const MyTensor& arg1,
const MyTensor& arg2,
const MyTensor::value_type factor);
// result[i] = arg[i] + value
MyTensor add(const MyTensor& arg,
const MyTensor::value_type& value);
// result[perm ^ i] = arg1[i] + arg2[i]
MyTensor add(const MyTensor& arg1,
const MyTensor& arg2,
const TiledArray::Permutation& perm);
// result[perm ^ i] = (arg1[i] + arg2[i]) * factor
MyTensor add(const MyTensor& arg1,
const MyTensor& arg2,
const MyTensor::numeric_type factor,
const TiledArray::Permutation& perm);
// result[perm ^ i] = arg[i] + value
MyTensor add(const MyTensor& arg,
const MyTensor::value_type& value,
const TiledArray::Permutation& perm);
// result[i] += arg[i]
void add_to(MyTensor& result,
const MyTensor& arg);
// (result[i] += arg[i]) *= factor
void add_to(MyTensor& result,
const MyTensor& arg,
const MyTensor::numeric_type factor);
// result[i] += value
void add_to(MyTensor& result,
const MyTensor::value_type& value);
// Subtraction operations
// result[i] = arg1[i] - arg2[i]
MyTensor subt(const MyTensor& arg1,
const MyTensor& arg2);
// result[i] = (arg1[i] - arg2[i]) * factor
MyTensor subt(const MyTensor& arg1,
const MyTensor& arg2,
const MyTensor::numeric_type factor);
// result[i] = arg[i] - value
MyTensor subt(const MyTensor& arg,
const MyTensor::value_type& value);
// result[perm ^ i] = arg1[i] - arg2[i]
MyTensor subt(const MyTensor& arg1,
const MyTensor& arg2,
const TiledArray::Permutation& perm);
// result[perm ^ i] = (arg1[i] - arg2[i]) * factor
MyTensor subt(const MyTensor& arg1,
const MyTensor& arg2,
const MyTensor::numeric_type factor,
const TiledArray::Permutation& perm);
// result[perm ^ i] = arg[i] - value
MyTensor subt(const MyTensor& arg,
const MyTensor::value_type value,
const TiledArray::Permutation& perm);
// result[i] -= arg[i]
void subt_to(MyTensor& result,
const MyTensor& arg);
// (result[i] -= arg[i]) *= factor
void subt_to(MyTensor& result,
const MyTensor& arg,
const MyTensor::numeric_type factor);
// result[i] -= value
void subt_to(MyTensor& result,
const MyTensor::value_type& value);
// (Entrywise) multiplication operations (Hadamard product)
// result[i] = arg1[i] * arg2[i]
MyTensor mult(const MyTensor& arg1,
const MyTensor& arg2);
// result[i] = (arg1[i] * arg2[i]) * factor
MyTensor mult(const MyTensor& arg1,
const MyTensor& arg2,
const MyTensor::numeric_type factor);
// result[perm ^ i] = arg1[i] * arg2[i]
MyTensor mult(const MyTensor& arg1,
const MyTensor& arg2,
const TiledArray::Permutation& perm);
// result[perm^ i] = (arg1[i] * arg2[i]) * factor
MyTensor mult(const MyTensor& arg1,
const MyTensor& arg2,
const MyTensor::numeric_type factor,
const TiledArray::Permutation& perm);
// result[i] *= arg[i]
void mult_to(MyTensor& result,
const MyTensor& arg);
// (result[i] *= arg[i]) *= factor
void mult_to(MyTensor& result,
const MyTensor& arg,
const MyTensor::numeric_type factor);
// Negation operations
// result[i] = -(arg[i])
MyTensor neg(const MyTensor& arg);
// result[perm ^ i] = -(arg[i])
MyTensor neg(const MyTensor& arg,
const TiledArray::Permutation& perm);
// result[i] = -(result[i])
void neg_to(MyTensor& result);
// Contraction operations
// GEMM operation with fused indices as defined by gemm_config; multiply arg1 by arg2, return the result
MyTensor gemm(const MyTensor& arg1,
const MyTensor& arg2,
const MyTensor::numeric_type factor,
const TiledArray::math::GemmHelper& gemm_config);
// GEMM operation with fused indices as defined by gemm_config; multiply left by right, store to result
void gemm(MyTensor& result,
const MyTensor& arg1,
const MyTensor& arg2,
const MyTensor::numeric_type factor,
const TiledArray::math::GemmHelper& gemm_config);
// Reduction operations
// Sum of hyper diagonal elements
MyTensor::numeric_type trace(const MyTensor& arg);
// foreach(i) result += arg[i]
MyTensor::numeric_type sum(const MyTensor& arg);
// foreach(i) result *= arg[i]
MyTensor::numeric_type product(const MyTensor& arg);
// foreach(i) result += arg[i] * arg[i]
MyTensor::numeric_type squared_norm(const MyTensor& arg);
// sqrt(squared_norm(arg))
MyTensor::numeric_type norm(const MyTensor& arg);
// foreach(i) result = max(result, arg[i])
MyTensor::numeric_type max(const MyTensor& arg);
// foreach(i) result = min(result, arg[i])
MyTensor::numeric_type min(const MyTensor& arg);
// foreach(i) result = max(result, abs(arg[i]))
MyTensor::numeric_type abs_max(const MyTensor& arg);
// foreach(i) result = min(result, abs(arg[i]))
MyTensor::numeric_type abs_min(const MyTensor& arg);
```
## User-Defined Lazy Tiles
Lazy tiles are generated only when they are needed and discarded immediately after use. Common uses for lazy tiles include computing arrays on-the-fly, reading them from disk, etc. Lazy tiles are used internally by `TiledArray::DistArray` to generate data tiles that are then fed into arithmetic operations.
The main requirements of lazy tiles are:
1. `typedef ... eval_type`, which is the data tile type (e.g. TiledArray::Tensor).
2. `eval_type` cannot be the same object type as the lazy tile itself.
3. `explicit operator eval_type() const`, which is the function used to generate the data tile.
Lazy tiles should have the following interface.
```
class MyLazyTile {
public:
typedef ... eval_type; // The data tile to which this tile will be converted to; typically TiledArray::Tensor
// Can instead define TiledArray::eval_trait<MyLazyTile>::type
// Default constructor
MyLazyTile();
// Copy constructor
MyLazyTile(const MyLazyTile& other);
// Assignment operator
MyLazyTile& operator=(const MyLazyTile& other);
// Convert lazy tile to data tile
explicit operator eval_type() const;
// MADNESS compliant serialization
template <typename Archive>
void serialize(const Archive&);
}; // class MyLazyTile
```
# User Defined Shapes
You can define a shape object for your `Array` object, which defines the sparsity of an array. A shape object is a replicated object, so you should design your shape object accordingly. You may implement an initialization algorithm for your shape that communicates with other processes. However, communication is not allowed after the object has been initialized, shape arithmetic operations must be completely local (non-communicating) operations.
```
class MyShape {
public:
// Return true if range matches the range of this shape
bool validate(const Range& shape);
// Returns true if the
template <typename Index>
bool is_zero(const Index&);
/// Returns true if this shape is dense.
bool is_dense();
// Permute shape
MyShape perm(const TiledArray::Permutation& perm);
// Scale shape
template <typename Scalar>
MyShape scale(const Scalar factor);
// Scale and permute shape
template <typename Scalar>
MyShape scale(const Scalar factor, const TiledArray::Permutation& perm);
// Add shapes
MyShape add(const MyShape& right);
// Add shapes and permute the result
MyShape add(const MyShape& right, const TiledArray::Permutation& perm);
// Add and scale shapes
template <typename Scalar>
MyShape add(const MyShape& right, const Scalar factor);
// Add and scale shapes, and permute the result
template <typename Scalar>
MyShape add(const MyShape& right, const Scalar factor, const TiledArray::Permutation& perm);
// Add a constant to a shape
template <typename Scalar>
MyShape add(const Scalar value)
// Add a constant to and scale a shape, and permute the result
template <typename Scalar>
MyShape add(const Scalar value, const TiledArray::Permutation& perm);
// Subtract shapes
MyShape subt(const MyShape& right);
// Subtract shapes, and permute the result
MyShape subt(const MyShape& right, const TiledArray::Permutation& perm);
// Subtract and scale shapes
template <typename Scalar>
MyShape subt(const MyShape& right, const Scalar factor);
// Subtract and scale shapes, and permute the result
template <typename Scalar>
MyShape subt(const MyShape& right, const Scalar factor, const TiledArray::Permutation& perm);
// Subtract a constant value
template <typename Scalar>
MyShape subt(const Scalar value);
// Subtract a constant value, and permute the result
template <typename Scalar>
MyShape subt(const Scalar value, const TiledArray::Permutation& perm);
// (Entrywise) multiplication of shapes
MyShape mult(const MyShape& right);
// (Entrywise) multiplication of shapes, followed by permutation
MyShape mult(const MyShape& right, const TiledArray::Permutation& perm);
// (Entrywise) multiplication of shapes, followed by scaling
template <typename Scalar>
MyShape mult(const MyShape& right, const Scalar factor);
// (Entrywise) multiplication of shapes, followed by scaling, followed by permutation
template <typename Scalar>
MyShape mult(const MyShape& right, const Scalar factor, const TiledArray::Permutation& perm);
// Contract and scale shapes
template <typename Scalar>
MyShape gemm(const MyShape& right, const Scalar factor,
const TiledArray::math::GemmHelper& gemm_helper);
// Contract and scale shapes, and permute the result
template <typename Scalar>
MyShape gemm(const MyShape& right, const Scalar factor,
const TiledArray::math::GemmHelper& gemm_helper, const TiledArray::Permutation& perm);
}; // class MyShape
```
# User Defined Process Map
You can also create process maps for your `Array` object, which is used by TiledArray to determine the process that owns a tile for a given `Array` object. For a process map to be valid, all tiles are owned by exactly one process and all processes must agree on this tile ownership. The exception to these rules is a replicated process map. In addition, a process map must maintain a list of local tiles.
```
class MyPmap : public TiledArray::Pmap {
protected:
// Import Pmap protected variables
using Pmap::rank_; // The rank of this process
using Pmap::procs_; // The number of processes
using Pmap::size_; // The number of tiles mapped among all processes
using Pmap::local_; // A list of local tiles (you must initialize this in the constructor)
public:
typedef Pmap::size_type size_type; // Key type
// Constructor
MyPmap(madness::World& world, size_type size);
// Virtual destructor
virtual ~MyPmap();
// Returns the process that owns tile
virtual size_type owner(const size_type tile) const;
// Returns true if tile is owned by this process
virtual bool is_local(const size_type tile) const;
}; // class MyPmap
```
|