1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
/*
* This file is a part of TiledArray.
* Copyright (C) 2013 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <TiledArray/cuda/btas_um_tensor.h>
#include <TiledArray/version.h>
#include <tiledarray.h>
#include <iostream>
bool to_bool(const char* str) {
if (not strcmp(str, "0") || not strcmp(str, "no") || not strcmp(str, "false"))
return false;
if (not strcmp(str, "1") || not strcmp(str, "yes") || not strcmp(str, "true"))
return true;
throw std::runtime_error("unrecognized string specification of bool");
}
// makes tiles of fluctuating sizes
// if n = average tile size
// this will produce tiles of these sizes: n+1, n-1, n+2, n-2, etc.
// the last tile absorbs the remainder
std::vector<unsigned int> make_tiling(unsigned int range_size,
unsigned int ntiles) {
const auto average_tile_size = range_size / ntiles;
TA_ASSERT(average_tile_size > ntiles);
std::vector<unsigned int> result(ntiles + 1);
result[0] = 0;
for (long t = 0; t != ntiles - 1; ++t) {
result[t + 1] =
result[t] + average_tile_size + ((t % 2 == 0) ? (t + 1) : (-t));
}
result[ntiles] = range_size;
return result;
}
template <typename Tile, typename Policy>
void rand_fill_array(TA::DistArray<Tile, Policy>& array);
template <typename T>
void cc_abcd(madness::World& world, const TA::TiledRange1& trange_occ,
const TA::TiledRange1& trange_uocc, long repeat);
int main(int argc, char** argv) {
int rc = 0;
try {
// Initialize runtime
TA::World& world = TA::initialize(argc, argv);
// Get command line arguments
if (argc < 5) {
std::cout << "Mocks t2(i,a,j,b) * v(a,b,c,d) term in CC amplitude eqs"
<< std::endl
<< "Usage: " << argv[0]
<< " occ_size occ_nblocks uocc_size "
"uocc_nblocks [repetitions] float/double"
<< std::endl;
return 0;
}
const long n_occ = atol(argv[1]);
const long nblk_occ = atol(argv[2]);
const long n_uocc = atol(argv[3]);
const long nblk_uocc = atol(argv[4]);
if (n_occ <= 0) {
std::cerr << "Error: occ_size must be greater than zero.\n";
return 1;
}
if (nblk_occ <= 0) {
std::cerr << "Error: occ_nblocks must be greater than zero.\n";
return 1;
}
if (n_uocc <= 0) {
std::cerr << "Error: uocc_size must be greater than zero.\n";
return 1;
}
if (nblk_uocc <= 0) {
std::cerr << "Error: uocc_nblocks must be greater than zero.\n";
return 1;
}
if ((n_occ < nblk_occ) != 0ul) {
std::cerr << "Error: occ_size must be greater than occ_nblocks.\n";
return 1;
}
if ((n_uocc < nblk_uocc) != 0ul) {
std::cerr << "Error: uocc_size must be greater than uocc_nblocks.\n";
return 1;
}
const long repeat = (argc >= 6 ? atol(argv[5]) : 5);
if (repeat <= 0) {
std::cerr << "Error: number of repetitions must be greater than zero.\n";
return 1;
}
const auto real_type_str =
(argc >= 7) ? std::string(argv[6]) : std::string("double");
if (!(real_type_str == "double" || real_type_str == "float")) {
std::cerr << "Error: unrecognized floating point precision type, it is "
"either float or double.\n";
return 1;
}
if (world.rank() == 0) {
std::cout << "TiledArray: CC T2.V term test..."
<< "\nGit HASH: " << TILEDARRAY_REVISION
<< "\nNumber of nodes = " << world.size()
<< "\nocc size = " << n_occ
<< "\nocc nblocks = " << nblk_occ
<< "\nuocc size = " << n_uocc
<< "\nuocc nblocks = " << nblk_uocc
<< "\nprecision = " << real_type_str;
}
// Construct TiledRange1's
std::vector<unsigned int> tiling_occ = make_tiling(n_occ, nblk_occ);
std::vector<unsigned int> tiling_uocc = make_tiling(n_uocc, nblk_uocc);
auto trange_occ = TA::TiledRange1(tiling_occ.begin(), tiling_occ.end());
auto trange_uocc = TA::TiledRange1(tiling_uocc.begin(), tiling_uocc.end());
if (real_type_str == "double") {
cc_abcd<double>(world, trange_occ, trange_uocc, repeat);
} else {
cc_abcd<float>(world, trange_occ, trange_uocc, repeat);
}
TA::finalize();
} catch (TA::Exception& e) {
std::cerr << "!! TiledArray exception: " << e.what() << "\n";
rc = 1;
} catch (madness::MadnessException& e) {
std::cerr << "!! MADNESS exception: " << e.what() << "\n";
rc = 1;
} catch (SafeMPI::Exception& e) {
std::cerr << "!! SafeMPI exception: " << e.what() << "\n";
rc = 1;
} catch (std::exception& e) {
std::cerr << "!! std exception: " << e.what() << "\n";
rc = 1;
} catch (...) {
std::cerr << "!! exception: unknown exception\n";
rc = 1;
}
return rc;
}
template <typename T>
void cc_abcd(TA::World& world, const TA::TiledRange1& trange_occ,
const TA::TiledRange1& trange_uocc, long repeat) {
double to_gb = 1000000000.0;
auto n_occ = trange_occ.extent();
auto n_uocc = trange_uocc.extent();
if (world.rank() == 0) {
std::cout << "\nOOVV memory = "
<< n_occ * n_occ * n_uocc * n_uocc * sizeof(T) / to_gb << "GB"
<< "\nVVVV memory = "
<< n_uocc * n_uocc * n_uocc * n_uocc * sizeof(T) / to_gb << "GB"
<< "\n";
}
TA::TiledRange trange_oovv(
{trange_occ, trange_occ, trange_uocc, trange_uocc});
TA::TiledRange trange_vvvv(
{trange_uocc, trange_uocc, trange_uocc, trange_uocc});
// const bool do_validate = false; // set to true if need to validate the
// result
const auto complex_T = TA::detail::is_complex<T>::value;
const double flops_per_fma =
(complex_T ? 8 : 2); // 1 multiply takes 6/1 flops for complex/real
// 1 add takes 2/1 flops for complex/real
const double n_gflop = flops_per_fma * std::pow(n_occ, 2) *
std::pow(n_uocc, 4) / std::pow(1024., 3);
using CUDATile =
btas::Tensor<T, TA::Range, TiledArray::cuda_um_btas_varray<T>>;
using CUDAMatrix = TA::DistArray<TA::Tile<CUDATile>>;
// Construct tensors
CUDAMatrix t2(world, trange_oovv);
CUDAMatrix v(world, trange_vvvv);
CUDAMatrix t2_v;
// To validate, fill input tensors with random data, otherwise just with 1s
// if (do_validate) {
// rand_fill_array(t2);
// rand_fill_array(v);
// } else {
t2.fill_local(0.2);
v.fill_local(0.3);
// }
// Start clock
world.gop.fence();
if (world.rank() == 0) {
std::cout << "Starting iterations: "
<< "\n";
}
double total_time = 0.0;
double total_gflop_rate = 0.0;
// Do matrix multiplication
for (int i = 0; i < repeat; ++i) {
const double start = madness::wall_time();
// this is how the user would express this contraction
t2_v("i,j,a,b") = t2("i,j,c,d") * v("a,b,c,d");
const double stop = madness::wall_time();
const double time = stop - start;
const double gflop_rate = n_gflop / time;
// exclude iteration 1
if (i != 0) {
total_time += time;
total_gflop_rate += gflop_rate;
}
if (world.rank() == 0)
std::cout << "Iteration " << i + 1 << " time=" << time
<< " GFLOPS=" << gflop_rate << "\n";
}
// Print results
if (world.rank() == 0)
std::cout << "Average wall time = "
<< total_time / static_cast<double>(repeat - 1)
<< " sec\nAverage GFLOPS = "
<< total_gflop_rate / static_cast<double>(repeat - 1) << "\n";
double threshold = std::numeric_limits<T>::epsilon();
auto dot_length = n_uocc * n_uocc;
auto result = dot_length * 0.2 * 0.3;
auto verify = [&world, &threshold, &result,
&dot_length](const TA::Tile<CUDATile>& tile) {
auto n_elements = tile.size();
for (std::size_t i = 0; i < n_elements; i++) {
double abs_err = fabs(tile[i] - result);
// double abs_val = fabs(tile[i]);
double rel_err = abs_err / result / dot_length;
if (rel_err > threshold) {
std::cout << "Node: " << world.rank() << " Tile: " << tile.range()
<< " id: " << i
<< std::string(" gpu: " + std::to_string(tile[i]) +
" cpu: " + std::to_string(result) + "\n");
break;
}
}
};
for (auto iter = t2_v.begin(); iter != t2_v.end(); iter++) {
world.taskq.add(verify, t2_v.find(iter.index()));
}
world.gop.fence();
if (world.rank() == 0) {
std::cout << "Verification Passed" << std::endl;
}
}
template <typename Tile, typename Policy>
void rand_fill_array(TA::DistArray<Tile, Policy>& array) {
auto& world = array.world();
// Iterate over local, non-zero tiles
for (auto it : array) {
// Construct a new tile with random data
typename TA::DistArray<Tile, Policy>::value_type tile(
array.trange().make_tile_range(it.index()));
for (auto& tile_it : tile) tile_it = world.drand();
// Set array tile
it = tile;
}
}
|