1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
|
/*
* This file is a part of TiledArray.
* Copyright (C) 2018 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#define CUDA_API_PER_THREAD_DEFAULT_STREAM
#include <madness/config.h>
// clang-format off
#include <tiledarray.h>
#include <TiledArray/cuda/btas_um_tensor.h>
#include "TiledArray/cuda/cpu_cuda_vector.h"
#include <TiledArray/external/btas.h>
// clang-format on
#include <cuda_profiler_api.h>
namespace TiledArray {
///
/// cuda gemm interface function on left*right
///
template <typename T, typename Range>
btas::Tensor<T, Range, TiledArray::cpu_cuda_vector<T>> gemm(
const btas::Tensor<T, Range, TiledArray::cpu_cuda_vector<T>> &left,
const btas::Tensor<T, Range, TiledArray::cpu_cuda_vector<T>> &right,
T factor, const TiledArray::math::GemmHelper &gemm_helper) {
return btas_tensor_gemm_cuda_impl(left, right, factor, gemm_helper);
}
///
/// cuda gemm interface function on result = left*right
///
template <typename T, typename Range>
void gemm(btas::Tensor<T, Range, TiledArray::cpu_cuda_vector<T>> &result,
const btas::Tensor<T, Range, TiledArray::cpu_cuda_vector<T>> &left,
const btas::Tensor<T, Range, TiledArray::cpu_cuda_vector<T>> &right,
T factor, const TiledArray::math::GemmHelper &gemm_helper) {
return btas_tensor_gemm_cuda_impl(result, left, right, factor, gemm_helper);
}
///
/// cuda axpy interface function
///
template <typename T, typename Range>
void add_to(btas::Tensor<T, Range, TiledArray::cpu_cuda_vector<T>> &result,
const btas::Tensor<T, Range, TiledArray::cpu_cuda_vector<T>> &arg) {
btas_tensor_add_to_cuda_impl(result, arg, T(1.0));
}
///
/// cuda dot interface function
///
template <typename T, typename Range>
typename btas::Tensor<T, Range, TiledArray::cpu_cuda_vector<T>>::value_type
squared_norm(
const btas::Tensor<T, Range, TiledArray::cpu_cuda_vector<T>> &arg) {
return btas_tensor_squared_norm_cuda_impl(arg);
}
template <typename T, typename Range>
typename btas::Tensor<T, Range, TiledArray::cpu_cuda_vector<T>>::value_type
norm(const btas::Tensor<T, Range, TiledArray::cpu_cuda_vector<T>> &arg) {
return std::sqrt(squared_norm(arg));
}
/// to host for CPU GPU Array
template <typename T, typename Range, typename Policy>
void to_host(
TiledArray::DistArray<TiledArray::Tile<btas::Tensor<
T, Range, TiledArray::cpu_cuda_vector<T>>>,
Policy> &cpu_cuda_array) {
auto to_host =
[](TiledArray::Tile<
btas::Tensor<T, Range, TiledArray::cpu_cuda_vector<T>>> &tile) {
auto &stream = detail::get_stream_based_on_range(tile.range());
// do norm on GPU
auto tile_norm = norm(tile.tensor());
TiledArray::to_execution_space<TiledArray::ExecutionSpace::CPU>(
tile.tensor().storage(), stream);
return tile_norm;
};
foreach_inplace(cpu_cuda_array, to_host);
cpu_cuda_array.world().gop.fence();
cudaDeviceSynchronize();
};
/// to device for CPU GPU array
template <typename T, typename Range, typename Policy>
void to_device(
TiledArray::DistArray<TiledArray::Tile<btas::Tensor<
T, Range, TiledArray::cpu_cuda_vector<T>>>,
Policy> &cpu_gpu_array) {
auto to_device =
[](TiledArray::Tile<
btas::Tensor<T, Range, TiledArray::cpu_cuda_vector<T>>> &tile) {
auto &stream = detail::get_stream_based_on_range(tile.range());
TiledArray::to_execution_space<TiledArray::ExecutionSpace::CUDA>(
tile.tensor().storage(), stream);
return norm(tile.tensor());
};
foreach_inplace(cpu_gpu_array, to_device);
cpu_gpu_array.world().gop.fence();
cudaDeviceSynchronize();
};
} // namespace TiledArray
template <typename Storage>
void do_main_body(TiledArray::World &world, const long Nm, const long Bm,
const long Nn, const long Bn, const long Nk, const long Bk,
const long nrepeat) {
using Real = typename Storage::value_type;
const std::size_t Tm = Nm / Bm;
const std::size_t Tn = Nn / Bn;
const std::size_t Tk = Nk / Bk;
if (world.rank() == 0)
std::cout << "TiledArray: dense matrix multiply test...\n"
<< "Number of nodes = " << world.size()
<< "\nSize of A = " << Nm << "x" << Nk << " ("
<< double(Nm * Nk * sizeof(double)) / 1.0e9 << " GB)"
<< "\nSize of A block = " << Bm << "x" << Bk
<< "\nSize of B = " << Nk << "x" << Nn << " ("
<< double(Nk * Nn * sizeof(double)) / 1.0e9 << " GB)"
<< "\nSize of B block = " << Bk << "x" << Bn
<< "\nSize of C = " << Nm << "x" << Nn << " ("
<< double(Nm * Nn * sizeof(double)) / 1.0e9 << " GB)"
<< "\nSize of C block = " << Bm << "x" << Bn
<< "\n# of blocks of C = " << Tm * Tn
<< "\nAverage # of blocks of C/node = "
<< double(Tm * Tn) / double(world.size()) << "\n";
// Construct TiledRange
std::vector<unsigned int> blocking_m;
blocking_m.reserve(Tm + 1);
for (long i = 0l; i <= Nm; i += Bm) blocking_m.push_back(i);
std::vector<unsigned int> blocking_n;
blocking_n.reserve(Tn + 1);
for (long i = 0l; i <= Nn; i += Bn) blocking_n.push_back(i);
std::vector<unsigned int> blocking_k;
blocking_k.reserve(Tk + 1);
for (long i = 0l; i <= Nk; i += Bk) blocking_k.push_back(i);
// Structure of c
std::vector<TiledArray::TiledRange1> blocking_C;
blocking_C.reserve(2);
blocking_C.push_back(
TiledArray::TiledRange1(blocking_m.begin(), blocking_m.end()));
blocking_C.push_back(
TiledArray::TiledRange1(blocking_n.begin(), blocking_n.end()));
// Structure of a
std::vector<TiledArray::TiledRange1> blocking_A;
blocking_A.reserve(2);
blocking_A.push_back(
TiledArray::TiledRange1(blocking_m.begin(), blocking_m.end()));
blocking_A.push_back(
TiledArray::TiledRange1(blocking_k.begin(), blocking_k.end()));
// Structure of b
std::vector<TiledArray::TiledRange1> blocking_B;
blocking_B.reserve(2);
blocking_B.push_back(
TiledArray::TiledRange1(blocking_k.begin(), blocking_k.end()));
blocking_B.push_back(
TiledArray::TiledRange1(blocking_n.begin(), blocking_n.end()));
TiledArray::TiledRange // TRange for c
trange_c(blocking_C.begin(), blocking_C.end());
TiledArray::TiledRange // TRange for a
trange_a(blocking_A.begin(), blocking_A.end());
TiledArray::TiledRange // TRange for b
trange_b(blocking_B.begin(), blocking_B.end());
using value_type = typename Storage::value_type;
using CUDATile = btas::Tensor<Real, TA::Range, Storage>;
using CUDAMatrix = TA::DistArray<TA::Tile<CUDATile>>;
using TAMatrix = TA::DistArray<TA::Tensor<value_type>>;
CUDAMatrix c(world, trange_c);
value_type val_a = 0.03;
value_type val_b = 0.02;
{
// Construct and initialize arrays
TAMatrix a_host(world, trange_a);
TAMatrix b_host(world, trange_b);
a_host.fill(val_a);
b_host.fill(val_b);
CUDAMatrix a = TA::ta_tensor_to_um_tensor<TA::Tile<CUDATile>>(a_host);
CUDAMatrix b = TA::ta_tensor_to_um_tensor<TA::Tile<CUDATile>>(b_host);
world.gop.fence();
// TA::to_device(a);
// TA::to_device(b);
// c("m,n") = a("m,k") * b("k,n");
// start profiler
cudaProfilerStart();
// Start clock
const double wall_time_start = madness::wall_time();
// Do matrix multiplication
for (int i = 0; i < nrepeat; ++i) {
double iter_time_start = madness::wall_time();
// c("m,n") = a("m,k") * b("k,n") + a("m,n") - b("m,n");
c("m,n") = a("m,k") * b("k,n");
double iter_time_stop = madness::wall_time();
if (world.rank() == 0)
std::cout << "Iteration " << i + 1
<< " wall time: " << (iter_time_stop - iter_time_start)
<< "\n";
}
// Stop clock
const double wall_time_stop = madness::wall_time();
// stop profiler
cudaProfilerStop();
if (world.rank() == 0)
std::cout << "Average wall time = "
<< (wall_time_stop - wall_time_start) / double(nrepeat)
<< " sec\nAverage GFLOPS = "
<< double(nrepeat) * 2.0 * double(Nn * Nm * Nm) /
(wall_time_stop - wall_time_start) / 1.0e9
<< "\n";
}
double threshold =
std::numeric_limits<typename Storage::value_type>::epsilon();
auto dot_length = Nk;
// auto result = dot_length * val_a * val_b + val_a - val_b;
auto result = dot_length * val_a * val_b;
auto verify = [&world, &threshold, &result,
&dot_length](TA::Tile<CUDATile> &tile) {
auto n_elements = tile.size();
for (std::size_t i = 0; i < n_elements; i++) {
double abs_err = fabs(tile[i] - result);
// double abs_val = fabs(tile[i]);
double rel_err = abs_err / result / dot_length;
if (rel_err > threshold) {
std::cout << "Node: " << world.rank() << " Tile: " << tile.range()
<< " id: " << i
<< std::string(" gpu: " + std::to_string(tile[i]) +
" cpu: " + std::to_string(result) + "\n");
break;
}
}
};
for (auto iter = c.begin(); iter != c.end(); iter++) {
world.taskq.add(verify, c.find(iter.index()));
}
world.gop.fence();
if (world.rank() == 0) {
std::cout << "Verification Passed" << std::endl;
}
}
int try_main(int argc, char **argv) {
// Initialize runtime
TiledArray::World &world = TiledArray::initialize(argc, argv);
// Get command line arguments
if (argc < 6) {
std::cout << "multiplies A(Nm,Nk) * B(Nk,Nn), with dimensions m, n, and k "
"blocked by Bm, Bn, and Bk, respectively"
<< std::endl
<< "Usage: " << argv[0]
<< " Nm Bm Nn Bn Nk Bk [# of repetitions = 5] [real = double] "
"[storage type = cuda_um_btas_varray]\n";
return 0;
}
const long Nm = atol(argv[1]);
const long Bm = atol(argv[2]);
const long Nn = atol(argv[3]);
const long Bn = atol(argv[4]);
const long Nk = atol(argv[5]);
const long Bk = atol(argv[6]);
if (Nm <= 0 || Nn <= 0 || Nk <= 0) {
std::cerr << "Error: dimensions must be greater than zero.\n";
return 1;
}
if (Bm <= 0 || Bn <= 0 || Bk <= 0) {
std::cerr << "Error: block sizes must be greater than zero.\n";
return 1;
}
if ((Nm % Bm) != 0ul || Nn % Bn != 0ul || Nk % Bk != 0ul) {
std::cerr
<< "Error: diminsion size must be evenly divisible by block size.\n";
return 1;
}
const long nrepeat = (argc >= 8 ? atol(argv[7]) : 5);
if (nrepeat <= 0) {
std::cerr << "Error: number of repetitions must be greater than zero.\n";
return 1;
}
const auto real_type_str =
(argc >= 9) ? std::string(argv[8]) : std::string("double");
if (real_type_str != "float" && real_type_str != "double") {
std::cerr << "Error: invalid real type: " << real_type_str
<< "\n Valid option includes: float or "
"double. \n";
}
const auto storage_type =
(argc >= 10) ? std::string(argv[9]) : std::string{"cuda_um_btas_varray"};
if (storage_type != "cuda_um_btas_varray" &&
storage_type != "cuda_um_thrust_vector" &&
storage_type != "cpu_cuda_vector") {
std::cerr << "Error: invalid storage type: " << storage_type
<< "\n Valid option includes: cuda_um_vector or "
"cuda_um_btas_varray or cuda_um_thrust_vector "
"or cpu_cuda_vector. \n";
}
std::cout << "Storage type: " << storage_type << "<" << real_type_str << ">"
<< std::endl;
// auto to_bool = [](const std::string &str) {
// return (str == "true" || str == "True" || str == "TRUE" || str == "1" ||
// str == "yes" || str == "Yes" || str == "YES");
// };
int driverVersion, runtimeVersion;
auto error = cudaDriverGetVersion(&driverVersion);
if (error != cudaSuccess) {
std::cout << "error(cudaDriverGetVersion) = " << error << std::endl;
}
error = cudaRuntimeGetVersion(&runtimeVersion);
if (error != cudaSuccess) {
std::cout << "error(cudaRuntimeGetVersion) = " << error << std::endl;
}
std::cout << "CUDA {driver,runtime} versions = " << driverVersion << ","
<< runtimeVersion << std::endl;
{ // print device properties
int num_cuda_devices = TA::cudaEnv::instance()->num_cuda_devices();
if (num_cuda_devices <= 0) {
throw std::runtime_error("No CUDA-Enabled GPUs Found!\n");
}
int cuda_device_id = TA::cudaEnv::instance()->current_cuda_device_id();
int mpi_size = world.size();
int mpi_rank = world.rank();
for (int i = 0; i < mpi_size; i++) {
if (i == mpi_rank) {
std::cout << "CUDA Device Information for MPI Process Rank: "
<< mpi_rank << std::endl;
cudaDeviceProp prop;
auto error = cudaGetDeviceProperties(&prop, cuda_device_id);
if (error != cudaSuccess) {
std::cout << "error(cudaGetDeviceProperties) = " << error
<< std::endl;
}
std::cout << "Device #" << cuda_device_id << ": " << prop.name
<< std::endl
<< " managedMemory = " << prop.managedMemory << std::endl
<< " singleToDoublePrecisionPerfRatio = "
<< prop.singleToDoublePrecisionPerfRatio << std::endl;
int result;
error = cudaDeviceGetAttribute(&result, cudaDevAttrUnifiedAddressing,
cuda_device_id);
std::cout << " attrUnifiedAddressing = " << result << std::endl;
error = cudaDeviceGetAttribute(
&result, cudaDevAttrConcurrentManagedAccess, cuda_device_id);
std::cout << " attrConcurrentManagedAccess = " << result << std::endl;
error = cudaSetDevice(cuda_device_id);
if (error != cudaSuccess) {
std::cout << "error(cudaSetDevice) = " << error << std::endl;
}
size_t free_mem, total_mem;
error = cudaMemGetInfo(&free_mem, &total_mem);
std::cout << " {total,free} memory = {" << total_mem << "," << free_mem
<< "}" << std::endl;
}
world.gop.fence();
}
} // print device properties
// if (storage_type == "cpu_cuda_vector") {
// if (real_type_str == "double")
// do_main_body<TiledArray::cpu_cuda_vector<double>>(world, Nm, Bm, Nn,
// Bn,
// Nk, Bk, nrepeat);
// else
// do_main_body<TiledArray::cpu_cuda_vector<float>>(world, Nm, Bm, Nn,
// Bn,
// Nk, Bk, nrepeat);
// } else if (storage_type == "cuda_um_btas_varray") {
if (storage_type == "cuda_um_btas_varray") {
if (real_type_str == "double")
do_main_body<TiledArray::cuda_um_btas_varray<double>>(
world, Nm, Bm, Nn, Bn, Nk, Bk, nrepeat);
else
do_main_body<TiledArray::cuda_um_btas_varray<float>>(world, Nm, Bm, Nn,
Bn, Nk, Bk, nrepeat);
}
// else if (storage_type == "cuda_um_thrust_vector") {
// if (real_type_str == "double")
// do_main_body<TiledArray::cuda_um_thrust_vector<double>>(
// world, Nm, Bm, Nn, Bn, Nk, Bk, nrepeat);
// else
// do_main_body<TiledArray::cuda_um_thrust_vector<float>>(
// world, Nm, Bm, Nn, Bn, Nk, Bk, nrepeat);
// }
else {
throw std::runtime_error("Invalid storage type!\n");
}
TiledArray::finalize();
return 0;
}
int main(int argc, char *argv[]) {
try {
try_main(argc, argv);
} catch (thrust::system::detail::bad_alloc &ex) {
std::cout << ex.what() << std::endl;
size_t free_mem, total_mem;
auto result = cudaMemGetInfo(&free_mem, &total_mem);
std::cout << "CUDA memory stats: {total,free} = {" << total_mem << ","
<< free_mem << "}" << std::endl;
} catch (std::exception &ex) {
std::cout << ex.what() << std::endl;
} catch (...) {
std::cerr << "unknown exception" << std::endl;
}
return 0;
}
|