1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
/*
* This file is a part of TiledArray.
* Copyright (C) 2013 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <TiledArray/version.h>
#include <tiledarray.h>
#include <iostream>
using Tile_t = TiledArray::Tile<TiledArray::Tensor<double>>;
using Array_t = TiledArray::DistArray<Tile_t>;
void set_tiles(double val, Array_t& a) {
auto const& trange = a.trange();
auto pmap = a.pmap();
const auto end = pmap->end();
for (auto it = pmap->begin(); it != end; ++it) {
auto range = trange.make_tile_range(*it);
a.set(*it, Tile_t(TiledArray::Tensor<double>(range, val)));
}
}
int main(int argc, char** argv) {
int rc = 0;
try {
// Initialize runtime
TiledArray::World& world = TiledArray::initialize(argc, argv);
// Get command line arguments
if (argc < 2) {
std::cout << "Usage: " << argv[0]
<< " matrix_size block_size [repetitions]\n";
return 0;
}
const long matrix_size = atol(argv[1]);
const long block_size = atol(argv[2]);
if (matrix_size <= 0) {
std::cerr << "Error: matrix size must be greater than zero.\n";
return 1;
}
if (block_size <= 0) {
std::cerr << "Error: block size must be greater than zero.\n";
return 1;
}
if ((matrix_size % block_size) != 0ul) {
std::cerr << "Error: matrix size must be evenly divisible by block "
"size.\n";
return 1;
}
const long repeat = (argc >= 4 ? atol(argv[3]) : 5);
if (repeat <= 0) {
std::cerr << "Error: number of repetitions must be greater than zero.\n";
return 1;
}
const std::size_t num_blocks = matrix_size / block_size;
const std::size_t block_count = num_blocks * num_blocks;
if (world.rank() == 0)
std::cout << "TiledArray: dense matrix multiply test..."
<< "\nGit HASH: " << TILEDARRAY_REVISION
<< "\nNumber of nodes = " << world.size()
<< "\nMatrix size = " << matrix_size << "x"
<< matrix_size << "\nBlock size = " << block_size
<< "x" << block_size << "\nMemory per matrix = "
<< double(matrix_size * matrix_size * sizeof(double)) / 1.0e9
<< " GB\nNumber of blocks = " << block_count
<< "\nAverage blocks/node = "
<< double(block_count) / double(world.size()) << "\n";
const double flop =
2.0 * double(matrix_size * matrix_size * matrix_size) / 1.0e9;
// Construct TiledRange
std::vector<unsigned int> blocking;
blocking.reserve(num_blocks + 1);
for (long i = 0l; i <= matrix_size; i += block_size) blocking.push_back(i);
std::vector<TiledArray::TiledRange1> blocking2(
2, TiledArray::TiledRange1(blocking.begin(), blocking.end()));
TiledArray::TiledRange trange(blocking2.begin(), blocking2.end());
// Construct and initialize arrays
Array_t a(world, trange);
Array_t b(world, trange);
Array_t c(world, trange);
set_tiles(1.0, a);
set_tiles(1.0, b);
TiledArray::TArrayD a_check(world, trange);
TiledArray::TArrayD b_check(world, trange);
TiledArray::TArrayD c_check(world, trange);
a_check.fill(1.0);
b_check.fill(1.0);
// Start clock
world.gop.fence();
if (world.rank() == 0)
std::cout << "Starting iterations: "
<< "\n";
double total_time = 0.0;
// Do matrix multiplication
for (int i = 0; i < repeat; ++i) {
const double start = madness::wall_time();
c("m,n") = a("m,k") * b("k,n");
c_check("m,n") = a_check("m,k") * b_check("k,n");
// world.gop.fence();
const double time = madness::wall_time() - start;
total_time += time;
if (world.rank() == 0)
std::cout << "Iteration " << i + 1 << " time=" << time
<< " GFLOPS=" << flop / time << "\n";
auto check_it = c_check.begin();
for (auto it = c.begin(); it != c.end() && check_it != c_check.end();
++it, ++check_it) {
auto tile_diff = it->get().tensor().subt(check_it->get()).norm();
if (tile_diff >= 1e-15) {
std::cout << "Tile " << it.ordinal() << " failed test "
<< " with norm diff " << tile_diff << std::endl;
assert(false);
}
}
}
// Print results
if (world.rank() == 0)
std::cout << "Average wall time = " << total_time / double(repeat)
<< " sec\nAverage GFLOPS = "
<< double(repeat) * flop / total_time << "\n";
TiledArray::finalize();
} catch (TiledArray::Exception& e) {
std::cerr << "!! TiledArray exception: " << e.what() << "\n";
rc = 1;
} catch (madness::MadnessException& e) {
std::cerr << "!! MADNESS exception: " << e.what() << "\n";
rc = 1;
} catch (SafeMPI::Exception& e) {
std::cerr << "!! SafeMPI exception: " << e.what() << "\n";
rc = 1;
} catch (std::exception& e) {
std::cerr << "!! std exception: " << e.what() << "\n";
rc = 1;
} catch (...) {
std::cerr << "!! exception: unknown exception\n";
rc = 1;
}
return rc;
}
|