1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
/*
* This file is a part of TiledArray.
* Copyright (C) 2015 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* justus
* Department of Chemistry, Virginia Tech
*
* sparce.cpp
* Feb 5, 2015
*
*/
#include <TiledArray/version.h>
#include <tiledarray.h>
#include <iomanip>
#include <iostream>
int main(int argc, char** argv) {
int rc = 0;
try {
// Initialize runtime
TiledArray::World& world = TiledArray::initialize(argc, argv);
// Get command line arguments
if (argc < 2) {
std::cout << "Usage: " << argv[0]
<< " matrix_size block_size [repetitions]\n";
return 0;
}
const long matrix_size = atol(argv[1]);
const long block_size = atol(argv[2]);
if (matrix_size <= 0) {
std::cerr << "Error: matrix size must be greater than zero.\n";
return 1;
}
if (block_size <= 0) {
std::cerr << "Error: block size must be greater than zero.\n";
return 1;
}
if ((matrix_size % block_size) != 0ul) {
std::cerr
<< "Error: matrix size must be evenly divisible by block size.\n";
return 1;
}
const long repeat = (argc >= 4 ? atol(argv[3]) : 4);
if (repeat <= 0) {
std::cerr << "Error: number of repetitions must be greater than zero.\n";
return 1;
}
// Print information about the test
const std::size_t num_blocks = matrix_size / block_size;
const double app_flop = 2.0 * matrix_size * matrix_size * matrix_size;
const float tile_norm = std::sqrt(float(block_size * block_size));
std::vector<double> speeds, times, app_speeds, real_sparsity;
if (world.rank() == 0)
std::cout << "TiledArray: growing, block-sparse matrix multiply test..."
<< "\nGit HASH: " << TILEDARRAY_REVISION
<< "\nNumber of nodes = " << world.size()
<< "\nBlock size = " << block_size << "x" << block_size
<< "\nMemory per matrix = "
<< double(matrix_size * matrix_size * sizeof(double)) / 1.0e9
<< " GB"
<< "\nAverage blocks/node = "
<< double(num_blocks * num_blocks) / double(world.size())
<< "\n";
for (unsigned int sparsity = 100u; sparsity > 0u; sparsity -= 10u) {
TiledArray::TSpArrayD::wait_for_lazy_cleanup(world);
// Compute the number of blocks and matrix size for the sparse matrix
const double sparse_fraction = double(sparsity) / 100.0;
const long sparse_num_blocks =
std::sqrt(double(num_blocks * num_blocks) / sparse_fraction);
const long sparse_matrix_size = sparse_num_blocks * block_size;
const long sparse_block_count =
sparse_fraction * double(sparse_num_blocks * sparse_num_blocks);
if (world.rank() == 0)
std::cout << "\nSparsity = " << sparsity << "%"
<< "\nMatrix size = " << sparse_matrix_size << "x"
<< sparse_matrix_size << "\n";
// Construct TiledRange
std::vector<unsigned int> blocking;
blocking.reserve(sparse_num_blocks + 1);
for (long i = 0l; i <= sparse_matrix_size; i += block_size)
blocking.push_back(i);
const std::vector<TiledArray::TiledRange1> blocking2(
2, TiledArray::TiledRange1(blocking.begin(), blocking.end()));
const TiledArray::TiledRange trange(blocking2.begin(), blocking2.end());
// Construct tile norm tensors
TiledArray::Tensor<float> a_tile_norms(trange.tiles_range(), 0.0f),
b_tile_norms(trange.tiles_range(), 0.0f);
// Fill tile norm tensors
if (world.rank() == 0) {
if (sparsity == 100u) {
std::fill(a_tile_norms.begin(), a_tile_norms.end(), tile_norm);
std::fill(b_tile_norms.begin(), b_tile_norms.end(), tile_norm);
} else {
world.srand(time(NULL));
for (long count = 0l; count < sparse_block_count; ++count) {
// Find a new zero tile index.
std::size_t index = 0ul;
do {
index = world.rand() % trange.tiles_range().volume();
} while (a_tile_norms[index] >
TiledArray::SparseShape<float>::threshold());
// Set index tile of matrix matrix a.
a_tile_norms[index] = tile_norm;
// Find a new zero tile index.
do {
index = world.rand() % trange.tiles_range().volume();
} while (b_tile_norms[index] >
TiledArray::SparseShape<float>::threshold());
b_tile_norms[index] = tile_norm;
}
}
}
// Construct the argument shapes
TiledArray::SparseShape<float> a_shape(world, a_tile_norms, trange),
b_shape(world, b_tile_norms, trange);
// Construct and initialize arrays
TiledArray::TSpArrayD a(world, trange, a_shape);
TiledArray::TSpArrayD b(world, trange, b_shape);
TiledArray::TSpArrayD c;
a.fill_local(1.0);
b.fill_local(1.0);
// Start clock
if (world.rank() == 0) std::cout << "Starting iterations:\n";
double total_time = 0.0, flop = 0.0;
// Do matrix multiplication
for (int i = 0; i < repeat; ++i) {
const double start = madness::wall_time();
c("m,n") = a("m,k") * b("k,n");
const double time = madness::wall_time() - start;
total_time += time;
if (flop < 1.0) flop = 2.0 * c("m,n").sum();
if (world.rank() == 0)
std::cout << "Iteration " << i + 1 << " time=" << time
<< " s, speed=" << flop / time / 1.0e9
<< " GFLOPS, apparent speed=" << app_flop / time / 1.0e9
<< " GFLOPS\n";
}
// Compute results
speeds.push_back(double(repeat) * flop / total_time / 1.0e9);
times.push_back(total_time / repeat);
app_speeds.push_back(double(repeat) * app_flop / total_time / 1.0e9);
real_sparsity.push_back(100.0 * double(sparse_block_count) /
double(sparse_num_blocks * sparse_num_blocks));
// Print results for this iteration
if (world.rank() == 0) {
std::cout << "\nSparsity = " << real_sparsity.back()
<< "%\n"
<< "Average wall time = " << times.back() << " s\n"
<< "Average speed = " << speeds.back() << " GFLOPS\n"
<< "Average apparent speed = " << app_speeds.back()
<< " GFLOPS\n";
}
}
// Print out comma separated list of all results
if (world.rank() == 0) {
std::cout << "\n\nResults:\n"
"sparsity (%), time (s), speed (GFLOPS), apparent speed "
"(GFLOPS)\n";
for (unsigned int i = 0; i < 10; ++i) {
std::cout << real_sparsity[i] << ", " << times[i] << ", " << speeds[i]
<< ", " << app_speeds[i] << "\n";
}
}
TiledArray::finalize();
} catch (TiledArray::Exception& e) {
std::cerr << "!! TiledArray exception: " << e.what() << "\n";
rc = 1;
} catch (madness::MadnessException& e) {
std::cerr << "!! MADNESS exception: " << e.what() << "\n";
rc = 1;
} catch (SafeMPI::Exception& e) {
std::cerr << "!! SafeMPI exception: " << e.what() << "\n";
rc = 1;
} catch (std::exception& e) {
std::cerr << "!! std exception: " << e.what() << "\n";
rc = 1;
} catch (...) {
std::cerr << "!! exception: unknown exception\n";
rc = 1;
}
return rc;
}
|