File: ta_sparse_grow.cpp

package info (click to toggle)
tiledarray 1.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 9,568 kB
  • sloc: cpp: 53,449; javascript: 1,599; sh: 393; ansic: 226; python: 223; xml: 195; makefile: 36
file content (222 lines) | stat: -rw-r--r-- 8,192 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
/*
 *  This file is a part of TiledArray.
 *  Copyright (C) 2015  Virginia Tech
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  justus
 *  Department of Chemistry, Virginia Tech
 *
 *  sparce.cpp
 *  Feb 5, 2015
 *
 */

#include <TiledArray/version.h>
#include <tiledarray.h>
#include <iomanip>
#include <iostream>

int main(int argc, char** argv) {
  int rc = 0;

  try {
    // Initialize runtime
    TiledArray::World& world = TiledArray::initialize(argc, argv);

    // Get command line arguments
    if (argc < 2) {
      std::cout << "Usage: " << argv[0]
                << " matrix_size block_size [repetitions]\n";
      return 0;
    }
    const long matrix_size = atol(argv[1]);
    const long block_size = atol(argv[2]);
    if (matrix_size <= 0) {
      std::cerr << "Error: matrix size must be greater than zero.\n";
      return 1;
    }
    if (block_size <= 0) {
      std::cerr << "Error: block size must be greater than zero.\n";
      return 1;
    }
    if ((matrix_size % block_size) != 0ul) {
      std::cerr
          << "Error: matrix size must be evenly divisible by block size.\n";
      return 1;
    }
    const long repeat = (argc >= 4 ? atol(argv[3]) : 4);
    if (repeat <= 0) {
      std::cerr << "Error: number of repetitions must be greater than zero.\n";
      return 1;
    }

    // Print information about the test
    const std::size_t num_blocks = matrix_size / block_size;
    const double app_flop = 2.0 * matrix_size * matrix_size * matrix_size;
    const float tile_norm = std::sqrt(float(block_size * block_size));
    std::vector<double> speeds, times, app_speeds, real_sparsity;

    if (world.rank() == 0)
      std::cout << "TiledArray: growing, block-sparse matrix multiply test..."
                << "\nGit HASH: " << TILEDARRAY_REVISION
                << "\nNumber of nodes     = " << world.size()
                << "\nBlock size          = " << block_size << "x" << block_size
                << "\nMemory per matrix   = "
                << double(matrix_size * matrix_size * sizeof(double)) / 1.0e9
                << " GB"
                << "\nAverage blocks/node = "
                << double(num_blocks * num_blocks) / double(world.size())
                << "\n";

    for (unsigned int sparsity = 100u; sparsity > 0u; sparsity -= 10u) {
      TiledArray::TSpArrayD::wait_for_lazy_cleanup(world);

      // Compute the number of blocks and matrix size for the sparse matrix
      const double sparse_fraction = double(sparsity) / 100.0;
      const long sparse_num_blocks =
          std::sqrt(double(num_blocks * num_blocks) / sparse_fraction);
      const long sparse_matrix_size = sparse_num_blocks * block_size;
      const long sparse_block_count =
          sparse_fraction * double(sparse_num_blocks * sparse_num_blocks);

      if (world.rank() == 0)
        std::cout << "\nSparsity = " << sparsity << "%"
                  << "\nMatrix size = " << sparse_matrix_size << "x"
                  << sparse_matrix_size << "\n";

      // Construct TiledRange
      std::vector<unsigned int> blocking;
      blocking.reserve(sparse_num_blocks + 1);
      for (long i = 0l; i <= sparse_matrix_size; i += block_size)
        blocking.push_back(i);

      const std::vector<TiledArray::TiledRange1> blocking2(
          2, TiledArray::TiledRange1(blocking.begin(), blocking.end()));

      const TiledArray::TiledRange trange(blocking2.begin(), blocking2.end());

      // Construct tile norm tensors
      TiledArray::Tensor<float> a_tile_norms(trange.tiles_range(), 0.0f),
          b_tile_norms(trange.tiles_range(), 0.0f);

      // Fill tile norm tensors
      if (world.rank() == 0) {
        if (sparsity == 100u) {
          std::fill(a_tile_norms.begin(), a_tile_norms.end(), tile_norm);
          std::fill(b_tile_norms.begin(), b_tile_norms.end(), tile_norm);
        } else {
          world.srand(time(NULL));
          for (long count = 0l; count < sparse_block_count; ++count) {
            // Find a new zero tile index.
            std::size_t index = 0ul;
            do {
              index = world.rand() % trange.tiles_range().volume();
            } while (a_tile_norms[index] >
                     TiledArray::SparseShape<float>::threshold());

            // Set index tile of matrix matrix a.
            a_tile_norms[index] = tile_norm;

            // Find a new zero tile index.
            do {
              index = world.rand() % trange.tiles_range().volume();
            } while (b_tile_norms[index] >
                     TiledArray::SparseShape<float>::threshold());

            b_tile_norms[index] = tile_norm;
          }
        }
      }

      // Construct the argument shapes
      TiledArray::SparseShape<float> a_shape(world, a_tile_norms, trange),
          b_shape(world, b_tile_norms, trange);

      // Construct and initialize arrays
      TiledArray::TSpArrayD a(world, trange, a_shape);
      TiledArray::TSpArrayD b(world, trange, b_shape);
      TiledArray::TSpArrayD c;
      a.fill_local(1.0);
      b.fill_local(1.0);

      // Start clock
      if (world.rank() == 0) std::cout << "Starting iterations:\n";

      double total_time = 0.0, flop = 0.0;

      // Do matrix multiplication
      for (int i = 0; i < repeat; ++i) {
        const double start = madness::wall_time();
        c("m,n") = a("m,k") * b("k,n");
        const double time = madness::wall_time() - start;
        total_time += time;
        if (flop < 1.0) flop = 2.0 * c("m,n").sum();
        if (world.rank() == 0)
          std::cout << "Iteration " << i + 1 << "   time=" << time
                    << " s,   speed=" << flop / time / 1.0e9
                    << " GFLOPS,   apparent speed=" << app_flop / time / 1.0e9
                    << " GFLOPS\n";
      }

      // Compute results
      speeds.push_back(double(repeat) * flop / total_time / 1.0e9);
      times.push_back(total_time / repeat);
      app_speeds.push_back(double(repeat) * app_flop / total_time / 1.0e9);
      real_sparsity.push_back(100.0 * double(sparse_block_count) /
                              double(sparse_num_blocks * sparse_num_blocks));

      // Print results for this iteration
      if (world.rank() == 0) {
        std::cout << "\nSparsity               = " << real_sparsity.back()
                  << "%\n"
                  << "Average wall time      = " << times.back() << " s\n"
                  << "Average speed          = " << speeds.back() << " GFLOPS\n"
                  << "Average apparent speed = " << app_speeds.back()
                  << " GFLOPS\n";
      }
    }

    // Print out comma separated list of all results
    if (world.rank() == 0) {
      std::cout << "\n\nResults:\n"
                   "sparsity (%), time (s), speed (GFLOPS), apparent speed "
                   "(GFLOPS)\n";
      for (unsigned int i = 0; i < 10; ++i) {
        std::cout << real_sparsity[i] << ", " << times[i] << ", " << speeds[i]
                  << ", " << app_speeds[i] << "\n";
      }
    }

    TiledArray::finalize();

  } catch (TiledArray::Exception& e) {
    std::cerr << "!! TiledArray exception: " << e.what() << "\n";
    rc = 1;
  } catch (madness::MadnessException& e) {
    std::cerr << "!! MADNESS exception: " << e.what() << "\n";
    rc = 1;
  } catch (SafeMPI::Exception& e) {
    std::cerr << "!! SafeMPI exception: " << e.what() << "\n";
    rc = 1;
  } catch (std::exception& e) {
    std::cerr << "!! std exception: " << e.what() << "\n";
    rc = 1;
  } catch (...) {
    std::cerr << "!! exception: unknown exception\n";
    rc = 1;
  }

  return rc;
}