1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
/*
* This file is a part of TiledArray.
* Copyright (C) 2013 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <madness/world/worldmem.h>
#include <tiledarray.h>
#include <iostream>
using array_type = TA::TSpArrayD;
int main(int argc, char** argv) {
// Initialize runtime
TA::World& world = TA::initialize(argc, argv);
madness::print_meminfo(world.rank(), "t=0");
// Get command line arguments
if (argc < 2) {
std::cout << "Usage: ta_k_build ao_size ao_blk_size occ_size "
"occ_block_size df_size df_blk_size [repetitions]\n";
return 0;
}
const long ao_size = atol(argv[1]);
const long ao_blk_size = atol(argv[2]);
const long occ_size = atol(argv[3]);
const long occ_blk_size = atol(argv[4]);
const long df_size = atol(argv[5]);
const long df_blk_size = atol(argv[6]);
if (ao_size <= 0) {
std::cerr << "Error: ao size must be greater than zero.\n";
return 1;
}
if (occ_size <= 0) {
std::cerr << "Error: occ size must be greater than zero.\n";
return 1;
}
if (df_size <= 0) {
std::cerr << "Error: df size must be greater than zero.\n";
return 1;
}
if (ao_blk_size <= 0 || df_blk_size <= 0 || occ_blk_size <= 0) {
std::cerr << "Error: block sizes must be greater than zero.\n";
return 1;
}
if (ao_size % ao_blk_size != 0ul && df_size % df_blk_size != 0ul &&
occ_size % occ_blk_size != 0) {
std::cerr
<< "Error: tensor sizes must be evenly divisible by block sizes.\n";
return 1;
}
const long repeat = (argc >= 8 ? atol(argv[7]) : 5);
if (repeat <= 0) {
std::cerr << "Error: number of repetitions must be greater than zero.\n";
return 1;
}
const std::size_t num_blocks = ao_size / ao_blk_size;
const std::size_t coeff_num_blocks = occ_size / occ_blk_size;
const std::size_t df_num_blocks = df_size / df_blk_size;
// Memory used
double tensor_memory =
double(ao_size * ao_size * df_size * sizeof(double)) / 1e9;
double co_tensor_memory =
double(occ_size * ao_size * df_size * sizeof(double)) / 1e9;
if (world.rank() == 0)
std::cout << "TiledArray: Fock Build Test ...\n"
<< "Number of nodes = " << world.size()
<< "\nAO size = " << ao_size << "x" << ao_size
<< "\nocc size = " << occ_size << "x" << ao_size
<< "\n(ao ao|df) tensor ranks = " << ao_size << "x"
<< ao_size << "x" << df_size
<< "\n(ao ao|df) tensor block ranks = " << ao_blk_size
<< "x" << ao_blk_size << "x" << df_blk_size
<< "\n(ao ao|df) tensor storage = " << tensor_memory
<< " GB\n(ao occ|df) tensor storage = " << co_tensor_memory
<< " GB\n";
// Construct TiledRange
std::vector<unsigned int> ao_blocking;
ao_blocking.reserve(num_blocks + 1);
for (long i = 0; i <= ao_size; i += ao_blk_size) ao_blocking.push_back(i);
std::vector<unsigned int> occ_blocking;
occ_blocking.reserve(coeff_num_blocks + 1);
for (long i = 0; i <= occ_size; i += occ_blk_size) occ_blocking.push_back(i);
std::vector<unsigned int> df_blocking;
df_blocking.reserve(df_num_blocks + 1);
for (long i = 0; i <= df_size; i += df_blk_size) df_blocking.push_back(i);
std::vector<TA::TiledRange1> ao_blocking2(
2, TA::TiledRange1(ao_blocking.begin(), ao_blocking.end()));
// Create M^-1 blocking
std::vector<TA::TiledRange1> df_blocking2(
2, TA::TiledRange1(df_blocking.begin(), df_blocking.end()));
// Create C^T blocking
std::vector<TA::TiledRange1> coeff_blocking;
coeff_blocking.reserve(2);
coeff_blocking.push_back(
TA::TiledRange1(ao_blocking.begin(), ao_blocking.end()));
coeff_blocking.push_back(
TA::TiledRange1(occ_blocking.begin(), occ_blocking.end()));
std::vector<TA::TiledRange1> aad_blocking;
aad_blocking.reserve(3);
aad_blocking.push_back(
TA::TiledRange1(ao_blocking.begin(), ao_blocking.end()));
aad_blocking.push_back(
TA::TiledRange1(ao_blocking.begin(), ao_blocking.end()));
aad_blocking.push_back(
TA::TiledRange1(df_blocking.begin(), df_blocking.end()));
std::vector<TA::TiledRange1> oad_blocking;
oad_blocking.reserve(3);
oad_blocking.push_back(
TA::TiledRange1(occ_blocking.begin(), occ_blocking.end()));
oad_blocking.push_back(
TA::TiledRange1(ao_blocking.begin(), ao_blocking.end()));
oad_blocking.push_back(
TA::TiledRange1(df_blocking.begin(), df_blocking.end()));
TA::TiledRange ao_matrix_trange(ao_blocking2.begin(), ao_blocking2.end());
TA::TiledRange df_matrix_trange(df_blocking2.begin(), df_blocking2.end());
TA::TiledRange coeff_trange(coeff_blocking.begin(), coeff_blocking.end());
TA::TiledRange aad_trange(aad_blocking.begin(), aad_blocking.end());
TA::TiledRange oad_trange(oad_blocking.begin(), oad_blocking.end());
// make shapes
auto make_shape = [](const TA::TiledRange& trange) -> TA::SparseShape<float> {
TA::Tensor<float> tile_norms(trange.tiles_range());
for (auto& tile_norm : tile_norms) tile_norm = 1.e20;
// std::cout << "shape_norms = " << tile_norms << std::endl;
TA::SparseShape<float> result(tile_norms, trange);
// std::cout << "result.data() = " << result.data() << std::endl;
return result;
};
auto coeff_shape = make_shape(coeff_trange);
// std::cout << "coeff_shape.data() = " << coeff_shape.data() << std::endl;
auto ao_matrix_shape = make_shape(ao_matrix_trange);
// std::cout << "ao_matrix_shape.data() = " << ao_matrix_shape.data() <<
// std::endl;
auto df_matrix_shape = make_shape(df_matrix_trange);
// std::cout << "df_matrix_shape.data() = " << df_matrix_shape.data() <<
// std::endl;
auto aad_shape = make_shape(aad_trange);
// std::cout << "aad_shape.data() = " << aad_shape.data() << std::endl;
auto oad_shape = make_shape(oad_trange);
// std::cout << "oad_shape.data() = " << oad_shape.data() << std::endl;
// Construct and initialize arrays
madness::print_meminfo(world.rank(), "before allocation");
array_type C(world, coeff_trange, coeff_shape);
C.fill(1.0);
world.gop.fence();
madness::print_meminfo(world.rank(), "made C");
array_type K(world, ao_matrix_trange, ao_matrix_shape);
K.fill(1.0);
world.gop.fence();
madness::print_meminfo(world.rank(), "made K");
array_type M_oh_inv(world, df_matrix_trange, df_matrix_shape);
M_oh_inv.fill(1.0);
world.gop.fence();
madness::print_meminfo(world.rank(), "made M_oh_inv");
array_type Eri(world, aad_trange, aad_shape);
Eri.fill(1.0);
world.gop.fence();
madness::print_meminfo(world.rank(), "made Eri");
array_type K_temp(world, oad_trange, oad_shape);
world.gop.fence();
// Time first part of exchange build
if (world.rank() == 0) {
std::cout << "\nStarting K1" << std::endl;
}
world.gop.fence();
double k1_time_start = madness::wall_time();
// Do K build
// NB 1 extra iteration to warm up
for (int i = 0; i < repeat + 1; ++i) {
if (i == 1) k1_time_start = madness::wall_time();
K_temp("j,Z,P") = C("m,Z") * Eri("m,j,P");
world.gop.fence();
madness::print_meminfo(world.rank(), "made K1");
if (world.rank() == 0) {
if (i == 0)
std::cout << "Warmup ... ready to work now" << std::endl;
else
std::cout << "Iteration: " << i << " "
<< "\r" << std::flush;
}
}
std::cout << std::endl;
const double k1_time_stop = madness::wall_time();
double k1_time = k1_time_stop - k1_time_start;
double k1_gflops =
2.0 * double(occ_size * ao_size * ao_size *
df_size); // C("Z,m") * Eri("m,n,P") = K_temp("Z,n,P")
k1_gflops *= repeat;
k1_gflops /= (1e9 * k1_time);
if (world.rank() == 0) {
std::cout << "Average K1 time = " << double(k1_time) / double(repeat)
<< std::endl;
std::cout << "K1 GFlops = " << k1_gflops << std::endl;
}
// Starting K2
if (world.rank() == 0) {
std::cout << "\nStarting K2" << std::endl;
}
world.gop.fence();
const double k2_time_start = madness::wall_time();
// Do K build
for (int i = 0; i < repeat; ++i) {
K_temp("j,Z,P") = K_temp("j, Z, X") * M_oh_inv("X,P");
world.gop.fence();
madness::print_meminfo(world.rank(), "made K2");
if (world.rank() == 0)
std::cout << "Iteration: " << i + 1 << " "
<< "\r" << std::flush;
}
std::cout << std::endl;
const double k2_time_stop = madness::wall_time();
double k2_time = k2_time_stop - k2_time_start;
double k2_gflops =
2.0 *
double(
df_size * df_size * ao_size *
occ_size); // K_temp("j,Z,P") = K_temp("j, Z, X") * M_oh_size("X,P")
k2_gflops *= repeat;
k2_gflops /= (1e9 * k2_time);
if (world.rank() == 0) {
std::cout << "Average K2 time = " << double(k2_time) / double(repeat)
<< std::endl;
std::cout << "K2 GFlops = " << k2_gflops << std::endl;
}
// STARTING K2
if (world.rank() == 0) {
std::cout << "\nStarting K3" << std::endl;
}
world.gop.fence();
const double k3_time_start = madness::wall_time();
// Do K build
for (int i = 0; i < repeat; ++i) {
K("i,j") = K_temp("i,Z,P") * K_temp("j,Z,P");
world.gop.fence();
madness::print_meminfo(world.rank(), "made K3");
if (world.rank() == 0)
std::cout << "Iteration: " << i + 1 << " "
<< "\r" << std::flush;
}
std::cout << std::endl;
const double k3_time_stop = madness::wall_time();
double k3_time = k3_time_stop - k3_time_start;
double k3_gflops =
2.0 * double(occ_size * ao_size * ao_size *
df_size); // C("Z,m") * Eri("m,n,P") = K_temp("Z,n,P")
k3_gflops *= repeat;
k3_gflops /= (1e9 * k3_time);
world.gop.fence();
if (world.rank() == 0) {
std::cout << "Average K3 time = " << double(k3_time) / double(repeat)
<< std::endl;
std::cout << "K3 GFlops = " << k3_gflops << std::endl;
}
// build the whole exchange as in MPQC4
{
auto compute_G = [&]() -> array_type {
array_type W;
W("X, rho, i") = M_oh_inv("X,Y") * (Eri("rho, sig, Y") * C("sig, i"));
// Make J
array_type J;
J("mu, nu") = Eri("mu, nu, Z") *
(M_oh_inv("X, Z") * (W("X, rho, i") * C("rho, i")));
// Permute W
W("X, i, rho") = W("X, rho, i");
array_type K;
K("mu, nu") = W("X, i, mu") * W("X, i, nu");
array_type G;
G("mu, nu") = 2 * J("mu, nu") - K("mu, nu");
world.gop.fence();
madness::print_meminfo(world.rank(), "made J+K in 1 shot");
return G;
};
array_type G = compute_G();
for (int i = 1; i < repeat; ++i) G("i,j") += compute_G()("i,j");
}
world.gop.fence();
madness::print_meminfo(world.rank(), "made J+K in 1 shot");
TA::finalize();
return 0;
}
|