1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
/*
* This file is a part of TiledArray.
* Copyright (C) 2020 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* David Williams-Young
* Computational Research Division, Lawrence Berkeley National Laboratory
*
* conversion.cpp
* Created: 7 Feb, 2020
* Edited: 13 May, 2020
*
*/
#include <tiledarray.h>
#include <random>
template <typename Integral1, typename Integral2>
int64_t div_ceil(Integral1 x, Integral2 y) {
int64_t x_ll = x;
int64_t y_ll = y;
auto d = std::div(x_ll, y_ll);
return d.quot + !!d.rem;
}
TA::TiledRange gen_trange(size_t N, const std::vector<size_t>& TA_NBs) {
assert(TA_NBs.size() > 0);
std::default_random_engine gen(0);
std::uniform_int_distribution<> dist(0, TA_NBs.size() - 1);
auto rand_indx = [&]() { return dist(gen); };
auto rand_nb = [&]() { return TA_NBs[rand_indx()]; };
std::vector<size_t> t_boundaries = {0};
auto TA_NB = rand_nb();
while (t_boundaries.back() + TA_NB < N) {
t_boundaries.emplace_back(t_boundaries.back() + TA_NB);
TA_NB = rand_nb();
}
t_boundaries.emplace_back(N);
std::vector<TA::TiledRange1> ranges(
2, TA::TiledRange1(t_boundaries.begin(), t_boundaries.end()));
return TA::TiledRange(ranges.begin(), ranges.end());
};
int main(int argc, char** argv) {
auto& world = TA::initialize(argc, argv);
{
size_t N = argc > 1 ? std::stoi(argv[1]) : 1000;
size_t NB = argc > 2 ? std::stoi(argv[2]) : 128;
// Create Test Matrix
blacspp::Grid grid = blacspp::Grid::square_grid(MPI_COMM_WORLD);
TA::scalapack::BlockCyclicMatrix<double> ref_matrix(world, grid, N, N, NB, NB);
for (size_t i = 0; i < N; ++i)
for (size_t j = 0; j < N; ++j)
if (ref_matrix.dist().i_own(i, j)) {
auto [i_local, j_local] = ref_matrix.dist().local_indx(i, j);
ref_matrix.local_mat()(i_local, j_local) = i + j;
}
// Functor to generate identical matrix in tiles
auto make_ta_reference = [](TA::Tensor<double>& t, TA::Range const& range) {
t = TA::Tensor<double>(range, 0.0);
auto lo = range.lobound_data();
auto up = range.upbound_data();
for (auto m = lo[0]; m < up[0]; ++m) {
for (auto n = lo[1]; n < up[1]; ++n) {
t(m, n) = m + n;
}
}
return t.norm();
};
std::cout << std::scientific;
// Uniform Tiling = NB: MAT -> TA
{
auto trange = gen_trange(N, {NB});
auto ref_ta =
TA::make_array<TA::TArray<double> >(world, trange, make_ta_reference);
world.gop.fence();
auto test_ta = ref_matrix.tensor_from_matrix<TA::TArray<double>>(trange);
world.gop.fence();
double norm_diff = (ref_ta("i,j") - test_ta("i,j")).norm(world).get();
double ref_norm = ref_ta("i,j").norm(world).get();
double test_norm = test_ta("i,j").norm(world).get();
if (!world.rank()) {
std::cout << "|| REF ||_2 = " << ref_norm
<< std::endl;
std::cout << "|| TEST ||_2 = " << test_norm
<< std::endl;
std::cout << "|| MAT -> TA DIFF (UNIF) ||_2 = " << norm_diff
<< std::endl;
}
}
// Uniform Tiling = NB: TA -> MAT
{
auto trange = gen_trange(N, {NB});
auto ref_ta =
TA::make_array<TA::TArray<double> >(world, trange, make_ta_reference);
world.gop.fence();
TA::scalapack::BlockCyclicMatrix<double> test_matrix(ref_ta, grid, NB, NB);
world.gop.fence();
double local_norm_diff =
(test_matrix.local_mat() - ref_matrix.local_mat()).norm();
local_norm_diff *= local_norm_diff;
double norm_diff;
MPI_Allreduce(&local_norm_diff, &norm_diff, 1, MPI_DOUBLE, MPI_SUM,
MPI_COMM_WORLD);
norm_diff = std::sqrt(norm_diff);
if (!world.rank())
std::cout << "|| TA -> MAT DIFF (UNIF) ||_2 = " << norm_diff
<< std::endl;
}
// Random Tiling: MAT -> TA
{
auto trange = gen_trange(N, {107ul, 113ul, 211ul, 151ul});
auto ref_ta =
TA::make_array<TA::TArray<double> >(world, trange, make_ta_reference);
world.gop.fence();
auto test_ta = ref_matrix.tensor_from_matrix<TA::TArray<double>>(trange);
world.gop.fence();
double norm_diff = (ref_ta("i,j") - test_ta("i,j")).norm(world).get();
double ref_norm = ref_ta("i,j").norm(world).get();
double test_norm = test_ta("i,j").norm(world).get();
if (!world.rank()) {
std::cout << "|| MAT -> TA DIFF (RAND) ||_2 = " << norm_diff
<< std::endl;
}
}
// Random Tiling: TA -> MAT
{
auto trange = gen_trange(N, {107ul, 113ul, 211ul, 151ul});
auto ref_ta =
TA::make_array<TA::TArray<double> >(world, trange, make_ta_reference);
world.gop.fence();
TA::scalapack::BlockCyclicMatrix<double> test_matrix(ref_ta, grid, NB, NB);
world.gop.fence();
double local_norm_diff =
(test_matrix.local_mat() - ref_matrix.local_mat()).norm();
local_norm_diff *= local_norm_diff;
double norm_diff;
MPI_Allreduce(&local_norm_diff, &norm_diff, 1, MPI_DOUBLE, MPI_SUM,
MPI_COMM_WORLD);
norm_diff = std::sqrt(norm_diff);
if (!world.rank())
std::cout << "|| TA -> MAT DIFF (RAND) ||_2 = " << norm_diff
<< std::endl;
}
}
TA::finalize();
}
|