1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
|
/*
* This file is a part of TiledArray.
* Copyright (C) 2020 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* David Williams-Young
* Computational Research Division, Lawrence Berkeley National Laboratory
*
* evp.cpp
* Created: 11 May, 2020
*
*/
#include <tiledarray.h>
#include <random>
#include <scalapackpp/eigenvalue_problem/sevp.hpp>
#include <scalapackpp/pblas/gemm.hpp>
#include <TiledArray/math/scalapack.h>
using Array = TA::TArray<double>;
// using Array = TA::TSpArray<double>;
TA::TiledRange gen_trange(size_t N, const std::vector<size_t>& TA_NBs) {
assert(TA_NBs.size() > 0);
std::default_random_engine gen(0);
std::uniform_int_distribution<> dist(0, TA_NBs.size() - 1);
auto rand_indx = [&]() { return dist(gen); };
auto rand_nb = [&]() { return TA_NBs[rand_indx()]; };
std::vector<size_t> t_boundaries = {0};
auto TA_NB = rand_nb();
while (t_boundaries.back() + TA_NB < N) {
t_boundaries.emplace_back(t_boundaries.back() + TA_NB);
TA_NB = rand_nb();
}
t_boundaries.emplace_back(N);
std::vector<TA::TiledRange1> ranges(
2, TA::TiledRange1(t_boundaries.begin(), t_boundaries.end()));
return TA::TiledRange(ranges.begin(), ranges.end());
};
int main(int argc, char** argv) {
auto& world = TA::initialize(argc, argv);
{
size_t N = argc > 1 ? std::stoi(argv[1]) : 1000;
size_t NB = argc > 2 ? std::stoi(argv[2]) : 128;
std::default_random_engine gen(world.rank());
std::normal_distribution<> dist(0., 1.);
auto rand_gen = [&]() { return dist(gen); };
// Functor to create random, diagonally dominant tiles
auto make_random_ta = [&](TA::Tensor<double>& t, TA::Range const& range) {
t = TA::Tensor<double>(range, 0.0);
auto lo = range.lobound_data();
auto up = range.upbound_data();
for (auto m = lo[0]; m < up[0]; ++m) {
for (auto n = lo[1]; n < up[1]; ++n) {
t(m, n) = rand_gen();
if (m == n) t(m, n) += 100.;
}
}
return t.norm();
};
// Create BLACS Grid context
auto world_comm = world.mpi.comm().Get_mpi_comm();
blacspp::Grid grid = blacspp::Grid::square_grid(world_comm);
// Create TA tensor
auto trange = gen_trange(N, {NB});
auto tensor = TA::make_array<Array>(world, trange, make_random_ta);
// Symmetrize
Array tensor_symm(world, trange);
tensor_symm("i,j") = 0.5 * (tensor("i,j") + tensor("j,i"));
tensor("i,j") = tensor_symm("i,j");
auto [ evals, evecs_ta ] = TA::heig( tensor );
//// Check EVP with TA
Array tmp = TA::foreach (evecs_ta, [evals = evals](TA::Tensor<double>& result,
const TA::Tensor<double>& arg) {
result = TA::clone(arg);
auto range = arg.range();
auto lo = range.lobound_data();
auto up = range.upbound_data();
for (auto m = lo[0]; m < up[0]; ++m)
for (auto n = lo[1]; n < up[1]; ++n) {
result(m, n) = arg(m, n) * evals[n];
}
});
world.gop.fence();
tensor("i,j") = tensor("i,j") - tmp("i,k") * evecs_ta("j,k");
world.gop.fence();
auto err_norm = tensor("i,j").norm(world).get();
if (~world.rank())
std::cout << "EVP (Tensor) |A - XEX**T| = " << err_norm << std::endl;
world.gop.fence();
}
TA::finalize();
}
|