1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
/*
* This file is a part of TiledArray.
* Copyright (C) 2014 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
* Justus Calvin
* Department of Chemistry, Virginia Tech
*
* array_impl.cpp
* Oct 24, 2014
*
*/
#include "TiledArray/array_impl.h"
#include "sparse_shape_fixture.h"
#include "tiledarray.h"
#include "unit_test_config.h"
using namespace TiledArray;
struct ArrayImplBaseFixture : public SparseShapeFixture {
typedef Tensor<int> value_type;
typedef detail::ArrayImpl<value_type, DensePolicy> array_impl_base;
ArrayImplBaseFixture()
: pmap(new detail::HashPmap(*GlobalFixture::world,
tr.tiles_range().volume())) {}
std::shared_ptr<array_impl_base::pmap_interface> pmap;
}; // struct TensorImplBaseFixture
struct ArrayImplFixture : public ArrayImplBaseFixture {
typedef TiledRange trange_type;
typedef Tensor<int> value_type;
typedef detail::ArrayImpl<value_type, DensePolicy> array_impl_base;
typedef detail::ArrayImpl<value_type, SparsePolicy> sp_array_impl_base;
typedef array_impl_base::shape_type dense_shape_type;
typedef sp_array_impl_base::shape_type sparse_shape_type;
ArrayImplFixture()
: impl(*GlobalFixture::world, tr, dense_shape_type(), pmap),
sp_impl(*GlobalFixture::world, tr, make_shape(tr, 0.5, 42), pmap) {}
~ArrayImplFixture() { GlobalFixture::world->gop.fence(); }
array_impl_base impl;
sp_array_impl_base sp_impl;
}; // struct TensorImplFixture
BOOST_FIXTURE_TEST_SUITE(array_impl_suite, ArrayImplFixture)
BOOST_AUTO_TEST_CASE(constructor_dense_policy) {
BOOST_REQUIRE_NO_THROW(
array_impl_base(*GlobalFixture::world, tr, dense_shape_type(), pmap));
array_impl_base x(*GlobalFixture::world, tr, dense_shape_type(), pmap);
// Check that the initial conditions are correct after constructution.
BOOST_CHECK_EQUAL(&x.world(), GlobalFixture::world);
BOOST_CHECK(x.pmap() == pmap);
BOOST_CHECK_EQUAL(x.tiles_range(), tr.tiles_range());
BOOST_CHECK_EQUAL(x.trange(), tr);
BOOST_CHECK_EQUAL(x.size(), tr.tiles_range().volume());
BOOST_CHECK(x.is_dense());
for (std::size_t i = 0; i < tr.tiles_range().volume(); ++i)
BOOST_CHECK(!x.is_zero(i));
}
BOOST_AUTO_TEST_CASE(constructor_shape_policy) {
BOOST_REQUIRE_NO_THROW(sp_array_impl_base(*GlobalFixture::world, tr,
make_shape(tr, 0.5, 23), pmap));
sp_array_impl_base x(*GlobalFixture::world, tr, make_shape(tr, 0.5, 23),
pmap);
// Check that the initial conditions are correct after constructution.
BOOST_CHECK_EQUAL(&x.world(), GlobalFixture::world);
BOOST_CHECK(x.pmap() == pmap);
BOOST_CHECK_EQUAL(x.tiles_range(), tr.tiles_range());
BOOST_CHECK_EQUAL(x.trange(), tr);
BOOST_CHECK_EQUAL(x.size(), tr.tiles_range().volume());
BOOST_CHECK(!x.is_dense());
for (std::size_t i = 0; i < tr.tiles_range().volume(); ++i) {
if (x.shape()[i] < SparseShape<float>::threshold()) {
BOOST_CHECK(x.is_zero(i));
} else {
BOOST_CHECK(!x.is_zero(i));
}
}
}
BOOST_AUTO_TEST_CASE(tile_get_and_set_w_value) {
// Get each tile before it is set
for (std::size_t i = 0; i < tr.tiles_range().volume(); ++i) {
if (GlobalFixture::world->rank() == 0) {
const ProcessID owner = impl.owner(i);
// Set each tile on node 0
BOOST_CHECK_NO_THROW(
impl.set(i, value_type(impl.trange().make_tile_range(i), owner)));
// Get the tile future (may or may not be remote) and wait for the data to
// arrive.
Future<value_type> tile = impl.get(i);
GlobalFixture::world->gop.fence();
// Check that the future has been set and the data is what we expect.
BOOST_CHECK(tile.probe());
for (std::size_t j = 0ul; j < tile.get().size(); ++j)
BOOST_CHECK_EQUAL(tile.get()[j], owner);
} else {
GlobalFixture::world->gop.fence();
if (impl.is_local(i)) {
// Get the local tile
Future<value_type> tile = impl.get(i);
// Check that the future has been set and the data is what we expect.
BOOST_CHECK(tile.probe());
for (std::size_t j = 0ul; j < tile.get().size(); ++j)
BOOST_CHECK_EQUAL(tile.get()[j], GlobalFixture::world->rank());
}
}
}
}
BOOST_AUTO_TEST_CASE(tile_get_and_set_w_future) {
// Get each tile before it is set
for (std::size_t i = 0; i < tr.tiles_range().volume(); ++i) {
if (GlobalFixture::world->rank() == 0) {
const ProcessID owner = impl.owner(i);
Future<value_type> tile;
// Set each tile on node 0
BOOST_CHECK_NO_THROW(impl.set(i, tile));
// Get the tile future (may or may not be remote) and wait for the data to
// arrive.
tile.set(value_type(impl.trange().make_tile_range(i), owner));
GlobalFixture::world->gop.fence();
// Check that the future has been set and the data is what we expect.
BOOST_CHECK(tile.probe());
for (std::size_t j = 0ul; j < tile.get().size(); ++j)
BOOST_CHECK_EQUAL(tile.get()[j], owner);
} else {
GlobalFixture::world->gop.fence();
if (impl.is_local(i)) {
// Get the local tile
Future<value_type> tile = impl.get(i);
// Check that the future has been set and the data is what we expect.
BOOST_CHECK(tile.probe());
for (std::size_t j = 0ul; j < tile.get().size(); ++j)
BOOST_CHECK_EQUAL(tile.get()[j], GlobalFixture::world->rank());
}
}
}
}
BOOST_AUTO_TEST_CASE(tile_iterator_w_value) {
// Set local tiles via iterators
for (array_impl_base::iterator it = impl.begin(); it != impl.end(); ++it) {
BOOST_CHECK_NO_THROW(*it = value_type(
impl.trange().make_tile_range(it.ordinal()),
impl.owner(it.ordinal())));
}
GlobalFixture::world->gop.fence();
// Get each tile before it is set
for (std::size_t i = 0; i < tr.tiles_range().volume(); ++i) {
if (GlobalFixture::world->rank() == 0) {
// Get the tile future (may or may not be remote) and wait for the data to
// arrive.
value_type tile = impl.get(i);
GlobalFixture::world->gop.fence();
// Check that the future has been set and the data is what we expect.
for (std::size_t j = 0ul; j < tile.size(); ++j)
BOOST_CHECK_EQUAL(tile[j], impl.owner(i));
} else {
GlobalFixture::world->gop.fence();
if (impl.is_local(i)) {
// Get the local tile
value_type tile = impl.get(i);
// Check that the future has been set and the data is what we expect.
for (std::size_t j = 0ul; j < tile.size(); ++j)
BOOST_CHECK_EQUAL(tile[j], GlobalFixture::world->rank());
}
}
}
}
BOOST_AUTO_TEST_CASE(tile_iterator_w_future) {
// Set local tiles via iterators
for (array_impl_base::iterator it = impl.begin(); it != impl.end(); ++it) {
Future<value_type> tile;
BOOST_CHECK_NO_THROW(*it = tile);
tile.set(value_type(impl.trange().make_tile_range(it.ordinal()),
GlobalFixture::world->rank()));
}
GlobalFixture::world->gop.fence();
// Get each tile before it is set
for (std::size_t i = 0; i < tr.tiles_range().volume(); ++i) {
if (GlobalFixture::world->rank() == 0) {
// Get the tile, which may be local or remote.
Future<value_type> tile = impl.get(i);
GlobalFixture::world->gop.fence();
// Check that the future has been set and the data is what we expect.
BOOST_CHECK(tile.probe());
for (std::size_t j = 0ul; j < tile.get().size(); ++j)
BOOST_CHECK_EQUAL(tile.get()[j], impl.owner(i));
} else {
GlobalFixture::world->gop.fence();
if (impl.is_local(i)) {
// Get the local tile
Future<value_type> tile = impl.get(i);
// Check that the future has been set and the data is what we expect.
BOOST_CHECK(tile.probe());
for (std::size_t j = 0ul; j < tile.get().size(); ++j)
BOOST_CHECK_EQUAL(tile.get()[j], GlobalFixture::world->rank());
}
}
}
}
BOOST_AUTO_TEST_SUITE_END()
|