1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
|
/*
* This file is a part of TiledArray.
* Copyright (C) 2013 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Justus Calvin
* Department of Chemistry, Virginia Tech
*
* dist_eval_contraction_eval.h
* Oct 8, 2013
*
*/
#include "array_fixture.h"
#include "../src/TiledArray/dist_eval/contraction_eval.h"
#include "../src/tiledarray.h"
#include "sparse_shape_fixture.h"
#include "unit_test_config.h"
using namespace TiledArray;
using TiledArray::detail::ContractReduce;
using TiledArray::detail::Noop;
using TiledArray::detail::UnaryWrapper;
struct ContractionEvalFixture : public SparseShapeFixture {
typedef Noop<TensorI, TensorI, true> array_base_op_type;
typedef UnaryWrapper<array_base_op_type> array_op_type;
typedef detail::DistEval<detail::LazyArrayTile<TensorI, array_op_type>,
DensePolicy>
array_eval_type;
typedef Eigen::Matrix<int, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>
matrix_type;
ContractionEvalFixture()
: left(*GlobalFixture::world, tr),
right(*GlobalFixture::world, tr),
proc_grid(*GlobalFixture::world, tr.tiles_range().extent(0),
tr.tiles_range().extent(tr.tiles_range().rank() - 1),
tr.elements_range().extent(0),
tr.elements_range().extent(tr.elements_range().rank() - 1u)),
left_arg(make_array_eval(
left, left.world(), DenseShape(),
proc_grid.make_row_phase_pmap(tr.tiles_range().volume() /
tr.tiles_range().extent(0)),
Permutation(), make_array_noop())),
right_arg(make_array_eval(
right, right.world(), DenseShape(),
proc_grid.make_col_phase_pmap(
tr.tiles_range().volume() /
tr.tiles_range().extent(tr.tiles_range().rank() - 1u)),
Permutation(), make_array_noop())),
result_tr() {
// Fill arrays with random data
rand_fill_array(left);
rand_fill_array(right);
std::array<TiledRange1, 2ul> tranges = {
{left.trange().data().front(), right.trange().data().back()}};
result_tr = TiledRange(tranges.begin(), tranges.end());
pmap.reset(new detail::BlockedPmap(*GlobalFixture::world,
result_tr.tiles_range().volume()));
}
~ContractionEvalFixture() { GlobalFixture::world->gop.fence(); }
static ContractReduce<TensorI, TensorI, TensorI, int> make_contract(
const unsigned int result_rank, const unsigned int left_rank,
const unsigned int right_rank, const Permutation& perm = Permutation()) {
return ContractReduce<TensorI, TensorI, TensorI, int>(
madness::cblas::NoTrans, madness::cblas::NoTrans, 1, result_rank,
left_rank, right_rank, perm);
}
static TiledArray::detail::UnaryWrapper<Noop<TensorI, TensorI, true> >
make_array_noop(const Permutation& perm = Permutation()) {
return TiledArray::detail::UnaryWrapper<Noop<TensorI, TensorI, true> >(
Noop<TensorI, TensorI, true>(), perm);
}
template <typename Tile, typename Policy>
static void rand_fill_array(DistArray<Tile, Policy>& array) {
// Iterate over local, non-zero tiles
for (typename DistArray<Tile, Policy>::iterator it = array.begin();
it != array.end(); ++it) {
// Construct a new tile with random data
typename DistArray<Tile, Policy>::value_type tile(
array.trange().make_tile_range(it.index()));
for (typename DistArray<Tile, Policy>::value_type::iterator tile_it =
tile.begin();
tile_it != tile.end(); ++tile_it)
*tile_it = GlobalFixture::world->rand() % 27;
// Set array tile
*it = tile;
}
}
template <typename Tile, typename Policy>
static matrix_type copy_to_matrix(const DistArray<Tile, Policy>& array,
const int middle) {
// Compute the number of rows and columns in the matrix, and a new weight
// that is bisected the row and column dimensions.
std::vector<std::size_t> weight(array.range().rank(), 0ul);
std::size_t MN[2] = {1ul, 1ul};
const int dim = array.range().rank();
int i = dim - 1;
for (; i >= middle; --i) {
weight[i] = MN[1];
MN[1] *= array.trange().elements_range().extent(i);
}
for (; i >= 0; --i) {
weight[i] = MN[0];
MN[0] *= array.trange().elements_range().extent(i);
}
// Construct the result matrix
matrix_type matrix(MN[0], MN[1]);
matrix.fill(0);
// Copy tiles from array to matrix
for (std::size_t index = 0ul; index < array.size(); ++index) {
if (array.is_zero(index)) continue;
// Get tile for index
const TensorI tile = array.find(index);
// Compute block start and size
std::size_t start[2] = {0ul, 0ul}, size[2] = {1ul, 1ul};
for (i = 0ul; i < middle; ++i) {
start[0] += tile.range().lobound(i) * weight[i] * size[0];
size[0] *= tile.range().extent(i);
}
for (; i < dim; ++i) {
start[1] += tile.range().lobound(i) * weight[i] * size[1];
size[1] *= tile.range().extent(i);
}
// Copy tile into matrix sub-block
matrix.block(start[0], start[1], size[0], size[1]) =
eigen_map(tile, size[0], size[1]);
}
return matrix;
}
/// Distributed contraction evaluator factory function
/// Construct a distributed contraction evaluator, which constructs a new
/// tensor by applying \c op to tiles of \c left and \c right.
/// \tparam LeftTile Tile type of the left-hand argument
/// \tparam RightTile Tile type of the right-hand argument
/// \tparam Policy The policy type of the argument
/// \tparam Op The unary tile operation
/// \param left The left-hand argument
/// \param right The right-hand argument
/// \param world The world where the argument will be evaluated
/// \param shape The shape of the evaluated tensor
/// \param pmap The process map for the evaluated tensor
/// \param perm The permutation applied to the tensor
/// \param op The contraction/reduction tile operation
template <typename LeftTile, typename RightTile, typename Policy, typename Op>
TiledArray::detail::DistEval<typename Op::result_type, Policy>
make_contract_eval(
const TiledArray::detail::DistEval<LeftTile, Policy>& left,
const TiledArray::detail::DistEval<RightTile, Policy>& right,
TiledArray::World& world,
const typename TiledArray::detail::DistEval<typename Op::result_type,
Policy>::shape_type& shape,
const std::shared_ptr<typename TiledArray::detail::DistEval<
typename Op::result_type, Policy>::pmap_interface>& pmap,
const Permutation& perm, const Op& op) {
TA_ASSERT(left.range().rank() == op.left_rank());
TA_ASSERT(right.range().rank() == op.right_rank());
TA_ASSERT((perm.dim() == op.result_rank()) || !perm);
// Define the impl type
typedef TiledArray::detail::Summa<
TiledArray::detail::DistEval<LeftTile, Policy>,
TiledArray::detail::DistEval<RightTile, Policy>, Op, Policy>
impl_type;
// Precompute iteration range data
const unsigned int num_contract_ranks = op.num_contract_ranks();
const unsigned int left_end = op.left_rank();
const unsigned int left_middle = left_end - num_contract_ranks;
const unsigned int right_end = op.right_rank();
// Construct a vector TiledRange1 objects from the left- and right-hand
// arguments that will be used to construct the result TiledRange. Also,
// compute the fused outer dimension sizes, number of tiles and elements,
// for the contraction.
typename impl_type::trange_type::Ranges ranges(op.result_rank());
std::size_t M = 1ul, m = 1ul, N = 1ul, n = 1ul;
std::size_t pi = 0ul;
for (unsigned int i = 0ul; i < left_middle; ++i) {
ranges[(perm ? perm[pi++] : pi++)] = left.trange().data()[i];
M *= left.range().extent(i);
m *= left.trange().elements_range().extent(i);
}
for (std::size_t i = num_contract_ranks; i < right_end; ++i) {
ranges[(perm ? perm[pi++] : pi++)] = right.trange().data()[i];
N *= right.range().extent(i);
n *= right.trange().elements_range().extent(i);
}
// Compute the number of tiles in the inner dimension.
std::size_t K = 1ul;
for (std::size_t i = left_middle; i < left_end; ++i)
K *= left.range().extent(i);
// Construct the result range
typename impl_type::trange_type trange(ranges.begin(), ranges.end());
// Construct the process grid
TiledArray::detail::ProcGrid proc_grid(world, M, N, m, n);
return TiledArray::detail::DistEval<typename Op::result_type, Policy>(
std::shared_ptr<impl_type>(new impl_type(
left, right, world, trange, shape, pmap, perm, op, K, proc_grid)));
}
template <typename Tile, typename Policy, typename Op>
static TiledArray::detail::DistEval<
TiledArray::detail::LazyArrayTile<
typename DistArray<Tile, Policy>::value_type, Op>,
Policy>
make_array_eval(
const DistArray<Tile, Policy>& array, TiledArray::World& world,
const typename TiledArray::detail::DistEval<Tile, Policy>::shape_type&
shape,
const std::shared_ptr<
typename TiledArray::detail::DistEval<Tile, Policy>::pmap_interface>&
pmap,
const Permutation& perm, const Op& op) {
typedef TiledArray::detail::ArrayEvalImpl<DistArray<Tile, Policy>, Op,
Policy>
impl_type;
return TiledArray::detail::DistEval<
TiledArray::detail::LazyArrayTile<
typename TiledArray::DistArray<Tile, Policy>::value_type, Op>,
Policy>(std::shared_ptr<impl_type>(new impl_type(
array, world, (perm ? perm * array.trange() : array.trange()), shape,
pmap, perm, op)));
}
TArrayI left;
TArrayI right;
detail::ProcGrid proc_grid;
array_eval_type left_arg;
array_eval_type right_arg;
TiledRange result_tr;
std::shared_ptr<Pmap> pmap;
}; // ContractionEvalFixture
BOOST_FIXTURE_TEST_SUITE(dist_eval_contraction_eval_suite,
ContractionEvalFixture)
BOOST_AUTO_TEST_CASE(constructor) {
BOOST_REQUIRE_NO_THROW(make_contract_eval(
left_arg, right_arg, left.world(), DenseShape(), pmap, Permutation(),
make_contract(2u, left_arg.trange().tiles_range().rank(),
right_arg.trange().tiles_range().rank())));
auto contract = make_contract_eval(
left_arg, right_arg, left_arg.world(), DenseShape(), pmap, Permutation(),
make_contract(2u, left_arg.trange().tiles_range().rank(),
right_arg.trange().tiles_range().rank()));
BOOST_CHECK_EQUAL(&contract.world(), GlobalFixture::world);
BOOST_CHECK(contract.pmap() == pmap);
BOOST_CHECK_EQUAL(contract.range(), result_tr.tiles_range());
BOOST_CHECK_EQUAL(contract.trange(), result_tr);
BOOST_CHECK_EQUAL(contract.size(), result_tr.tiles_range().volume());
BOOST_CHECK(contract.is_dense());
for (std::size_t i = 0; i < result_tr.tiles_range().volume(); ++i)
BOOST_CHECK(!contract.is_zero(i));
}
BOOST_AUTO_TEST_CASE(eval) {
auto contract = make_contract_eval(
left_arg, right_arg, left_arg.world(), DenseShape(), pmap, Permutation(),
make_contract(2u, left_arg.trange().tiles_range().rank(),
right_arg.trange().tiles_range().rank()));
using dist_eval_type = decltype(contract);
// Check evaluation
BOOST_REQUIRE_NO_THROW(contract.eval());
BOOST_REQUIRE_NO_THROW(contract.wait());
// Compute the reference contraction
const matrix_type l = copy_to_matrix(left, 1),
r = copy_to_matrix(right, GlobalFixture::dim - 1);
const matrix_type reference = l * r;
// Check that each tile has been properly scaled.
for (auto index : *contract.pmap()) {
// Get the array evaluator tile.
Future<dist_eval_type::value_type> tile;
BOOST_REQUIRE_NO_THROW(tile = contract.get(index));
// Force the evaluation of the tile
dist_eval_type::eval_type eval_tile;
BOOST_REQUIRE_NO_THROW(eval_tile = tile.get());
BOOST_CHECK(!eval_tile.empty());
if (!eval_tile.empty()) {
// Check that the result tile is correctly modified.
BOOST_CHECK_EQUAL(eval_tile.range(),
contract.trange().make_tile_range(index));
BOOST_CHECK(eigen_map(eval_tile) ==
reference.block(eval_tile.range().lobound(0),
eval_tile.range().lobound(1),
eval_tile.range().extent(0),
eval_tile.range().extent(1)));
}
}
}
BOOST_AUTO_TEST_CASE(perm_eval) {
Permutation perm({1, 0});
auto contract = make_contract_eval(
left_arg, right_arg, left_arg.world(), DenseShape(), pmap, perm,
make_contract(2u, left_arg.trange().tiles_range().rank(),
right_arg.trange().tiles_range().rank(), perm));
using dist_eval_type = decltype(contract);
// Check evaluation
BOOST_REQUIRE_NO_THROW(contract.eval());
BOOST_REQUIRE_NO_THROW(contract.wait());
// Compute the reference contraction
const matrix_type l = copy_to_matrix(left, 1),
r = copy_to_matrix(right, GlobalFixture::dim - 1);
const matrix_type reference = (l * r).transpose();
// Check that each tile has been properly scaled.
for (auto index : *contract.pmap()) {
// Get the array evaluator tile.
Future<dist_eval_type::value_type> tile;
BOOST_REQUIRE_NO_THROW(tile = contract.get(index));
// Force the evaluation of the tile
dist_eval_type::eval_type eval_tile;
BOOST_REQUIRE_NO_THROW(eval_tile = tile.get());
BOOST_CHECK(!eval_tile.empty());
if (!eval_tile.empty()) {
// Check that the result tile is correctly modified.
BOOST_CHECK_EQUAL(eval_tile.range(),
contract.trange().make_tile_range(index));
BOOST_CHECK(eigen_map(eval_tile) ==
reference.block(eval_tile.range().lobound(0),
eval_tile.range().lobound(1),
eval_tile.range().extent(0),
eval_tile.range().extent(1)));
}
}
}
BOOST_AUTO_TEST_CASE(sparse_eval) {
auto do_sparse_eval = [&](bool force_shape) -> void {
TSpArrayI left(*GlobalFixture::world, tr, make_shape(tr, 0.1, 23));
TSpArrayI right(*GlobalFixture::world, tr, make_shape(tr, 0.1, 42));
// Fill arrays with random data
rand_fill_array(left);
left.truncate();
rand_fill_array(right);
right.truncate();
auto left_arg = make_array_eval(
left, left.world(), left.shape(),
proc_grid.make_row_phase_pmap(tr.tiles_range().volume() /
tr.tiles_range().extent(0)),
Permutation(), make_array_noop());
auto right_arg = make_array_eval(
right, right.world(), right.shape(),
proc_grid.make_col_phase_pmap(
tr.tiles_range().volume() /
tr.tiles_range().extent(tr.tiles_range().rank() - 1)),
Permutation(), make_array_noop());
auto op = make_contract(2u, left_arg.trange().tiles_range().rank(),
right_arg.trange().tiles_range().rank());
SparseShape<float> result_shape =
left_arg.shape().gemm(right_arg.shape(), 1, op.gemm_helper());
// if needed, force the shape to have 1 tile only
if (force_shape) {
auto result_shape_data = result_shape.data().clone();
bool found_nonzero = false;
for (auto& i : result_shape_data) {
if (i >= decltype(result_shape)::threshold() && !found_nonzero) {
found_nonzero = true;
i = std::numeric_limits<float>::max();
} else
i = 0.0;
}
TiledRange result_trange{dims[0], dims[0]};
result_shape = decltype(result_shape)(result_shape_data, result_trange);
}
auto contract = make_contract_eval(left_arg, right_arg, left_arg.world(),
result_shape, pmap, Permutation(), op);
using dist_eval_type = decltype(contract);
// Check evaluation
BOOST_REQUIRE_NO_THROW(contract.eval());
BOOST_REQUIRE_NO_THROW(contract.wait());
// Compute the reference contraction
const matrix_type l = copy_to_matrix(left, 1),
r = copy_to_matrix(right, GlobalFixture::dim - 1);
const matrix_type reference = l * r;
// Check that each tile has been properly scaled.
for (auto index : *contract.pmap()) {
// Skip zero tiles
if (contract.is_zero(index)) {
if (!force_shape) { // can't distinguish forced zeroes, can only check
// if shape was not forced
dist_eval_type::range_type range =
contract.trange().make_tile_range(index);
BOOST_CHECK((reference
.block(range.lobound(0), range.lobound(1),
range.extent(0), range.extent(1))
.array() == 0)
.all());
}
} else {
// Get the array evaluator tile.
Future<dist_eval_type::value_type> tile;
BOOST_REQUIRE_NO_THROW(tile = contract.get(index));
// Force the evaluation of the tile
dist_eval_type::eval_type eval_tile;
BOOST_REQUIRE_NO_THROW(eval_tile = tile.get());
BOOST_CHECK(!eval_tile.empty());
if (!eval_tile.empty()) {
// Check that the result tile is correctly modified.
BOOST_CHECK_EQUAL(eval_tile.range(),
contract.trange().make_tile_range(index));
BOOST_CHECK(eigen_map(eval_tile) ==
reference.block(eval_tile.range().lobound(0),
eval_tile.range().lobound(1),
eval_tile.range().extent(0),
eval_tile.range().extent(1)));
}
}
}
};
do_sparse_eval(false);
do_sparse_eval(true);
}
BOOST_AUTO_TEST_SUITE_END()
|