1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
/*
* This file is a part of TiledArray.
* Copyright (C) 2013 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Justus Calvin
* Department of Chemistry, Virginia Tech
*
* unary_eval.cpp
* August 8, 2013
*
*/
#include <array_fixture.h>
#include "TiledArray/dist_eval/unary_eval.h"
#include "tiledarray.h"
#include "unit_test_config.h"
using namespace TiledArray;
using namespace TiledArray::expressions;
using TiledArray::detail::Noop;
using TiledArray::detail::Scal;
using TiledArray::detail::UnaryWrapper;
// Array evaluator fixture
struct UnaryEvalImplFixture : public TiledRangeFixture {
typedef Noop<TArrayI::value_type, TArrayI::value_type, true>
array_op_base_type;
typedef UnaryWrapper<array_op_base_type> array_op_type;
typedef TiledArray::detail::DistEval<
TiledArray::detail::LazyArrayTile<TArrayI::value_type, array_op_type>,
DensePolicy>
dist_eval_type;
UnaryEvalImplFixture()
: array(*GlobalFixture::world, tr),
arg(make_array_eval(array, array.world(), DenseShape(), array.pmap(),
Permutation(),
array_op_type(array_op_base_type()))) {
// Fill array with random data
for (TArrayI::iterator it = array.begin(); it != array.end(); ++it) {
TensorI tile(array.trange().make_tile_range(it.index()));
for (TensorI::iterator tile_it = tile.begin(); tile_it != tile.end();
++tile_it)
*tile_it = GlobalFixture::world->rand() % 101;
*it = tile;
}
}
~UnaryEvalImplFixture() {}
static UnaryWrapper<Noop<TensorI, TensorI, true> > make_array_noop(
const Permutation& perm = Permutation()) {
return UnaryWrapper<Noop<TensorI, TensorI, true> >(
Noop<TensorI, TensorI, true>(), perm);
}
static UnaryWrapper<Scal<TensorI, TensorI, int, true> > make_scal1(
const int factor, const Permutation& perm = Permutation()) {
return UnaryWrapper<Scal<TensorI, TensorI, int, true> >(
Scal<TensorI, TensorI, int, true>(factor), perm);
}
static UnaryWrapper<Scal<TensorI, TensorI, int, false> > make_scal0(
const int factor, const Permutation& perm = Permutation()) {
return UnaryWrapper<Scal<TensorI, TensorI, int, false> >(
Scal<TensorI, TensorI, int, false>(factor), perm);
}
template <typename Tile, typename Policy, typename Op>
static TiledArray::detail::DistEval<
TiledArray::detail::LazyArrayTile<
typename DistArray<Tile, Policy>::value_type, Op>,
Policy>
make_array_eval(
const DistArray<Tile, Policy>& array, TiledArray::World& world,
const typename TiledArray::detail::DistEval<Tile, Policy>::shape_type&
shape,
const std::shared_ptr<
typename TiledArray::detail::DistEval<Tile, Policy>::pmap_interface>&
pmap,
const Permutation& perm, const Op& op) {
typedef TiledArray::detail::ArrayEvalImpl<DistArray<Tile, Policy>, Op,
Policy>
impl_type;
return TiledArray::detail::DistEval<
TiledArray::detail::LazyArrayTile<
typename TiledArray::DistArray<Tile, Policy>::value_type, Op>,
Policy>(std::shared_ptr<impl_type>(new impl_type(
array, world, (perm ? perm * array.trange() : array.trange()), shape,
pmap, perm, op)));
}
template <typename Tile, typename Policy, typename Op>
static TiledArray::detail::DistEval<typename Op::result_type, Policy>
make_unary_eval(
const TiledArray::detail::DistEval<Tile, Policy>& arg,
TiledArray::World& world,
const typename TiledArray::detail::DistEval<Tile, Policy>::shape_type&
shape,
const std::shared_ptr<
typename TiledArray::detail::DistEval<Tile, Policy>::pmap_interface>&
pmap,
const Permutation& perm, const Op& op) {
typedef TiledArray::detail::UnaryEvalImpl<
TiledArray::detail::DistEval<Tile, Policy>, Op, Policy>
impl_type;
return TiledArray::detail::DistEval<typename Op::result_type, Policy>(
std::shared_ptr<impl_type>(new impl_type(
arg, world, (perm ? perm * arg.trange() : arg.trange()), shape,
pmap, perm, op)));
}
TArrayI array;
dist_eval_type arg;
}; // ArrayEvalFixture
BOOST_FIXTURE_TEST_SUITE(unary_eval_suite, UnaryEvalImplFixture)
BOOST_AUTO_TEST_CASE(constructor) {
BOOST_REQUIRE_NO_THROW(make_unary_eval(arg, arg.world(), DenseShape(),
arg.pmap(), Permutation(),
make_scal0(3)));
auto unary = make_unary_eval(arg, arg.world(), DenseShape(), arg.pmap(),
Permutation(), make_scal0(3));
BOOST_CHECK_EQUAL(&unary.world(), GlobalFixture::world);
BOOST_CHECK(unary.pmap() == arg.pmap());
BOOST_CHECK_EQUAL(unary.range(), tr.tiles_range());
BOOST_CHECK_EQUAL(unary.trange(), tr);
BOOST_CHECK_EQUAL(unary.size(), tr.tiles_range().volume());
BOOST_CHECK(unary.is_dense());
for (std::size_t i = 0; i < tr.tiles_range().volume(); ++i)
BOOST_CHECK(!unary.is_zero(i));
BOOST_REQUIRE_NO_THROW(make_unary_eval(unary, unary.world(), DenseShape(),
arg.pmap(), Permutation(),
make_scal0(5)));
auto unary2 = make_unary_eval(unary, unary.world(), DenseShape(),
unary.pmap(), Permutation(), make_scal0(5));
BOOST_CHECK_EQUAL(&unary2.world(), GlobalFixture::world);
BOOST_CHECK(unary2.pmap() == arg.pmap());
BOOST_CHECK_EQUAL(unary2.range(), tr.tiles_range());
BOOST_CHECK_EQUAL(unary2.trange(), tr);
BOOST_CHECK_EQUAL(unary2.size(), tr.tiles_range().volume());
BOOST_CHECK(unary2.is_dense());
for (std::size_t i = 0; i < tr.tiles_range().volume(); ++i)
BOOST_CHECK(!unary2.is_zero(i));
}
BOOST_AUTO_TEST_CASE(eval) {
auto dist_eval = make_unary_eval(arg, arg.world(), DenseShape(), arg.pmap(),
Permutation(), make_scal0(3));
BOOST_REQUIRE_NO_THROW(dist_eval.eval());
BOOST_REQUIRE_NO_THROW(dist_eval.wait());
// Check that each tile has been properly scaled.
for (auto index : *dist_eval.pmap()) {
// Get the original type
TensorI array_tile = array.find(index);
// Get the array evaluator tile.
Future<TensorI> tile;
BOOST_REQUIRE_NO_THROW(tile = dist_eval.get(index));
// Force the evaluation of the tile
TensorI eval_tile;
BOOST_REQUIRE_NO_THROW(eval_tile = tile.get());
// Check that the result tile is correctly modified.
BOOST_CHECK_EQUAL(eval_tile.range(),
dist_eval.trange().make_tile_range(index));
BOOST_CHECK_EQUAL(eval_tile.range(), array_tile.range());
for (std::size_t i = 0ul; i < eval_tile.size(); ++i) {
BOOST_CHECK_EQUAL(eval_tile[i], 3 * array_tile[i]);
}
}
}
BOOST_AUTO_TEST_CASE(double_eval) {
/// Construct a scaling unary evaluator
auto dist_eval = make_unary_eval(arg, arg.world(), DenseShape(), arg.pmap(),
Permutation(), make_scal0(3));
/// Construct a two-step, scaling unary evaluator
auto dist_eval2 =
make_unary_eval(dist_eval, dist_eval.world(), DenseShape(),
dist_eval.pmap(), Permutation(), make_scal1(5));
BOOST_REQUIRE_NO_THROW(dist_eval2.eval());
BOOST_REQUIRE_NO_THROW(dist_eval2.wait());
// Check that each tile has been properly scaled.
for (auto index : *dist_eval2.pmap()) {
// Get the original type
TensorI array_tile = array.find(index);
// Get the array evaluator tile.
Future<TensorI> tile;
BOOST_REQUIRE_NO_THROW(tile = dist_eval2.get(index));
// Wait the evaluation of the tile
TensorI eval_tile;
BOOST_REQUIRE_NO_THROW(eval_tile = tile.get());
// Check that the result tile is correctly modified.
BOOST_CHECK_EQUAL(eval_tile.range(),
dist_eval2.trange().make_tile_range(index));
BOOST_CHECK_EQUAL(eval_tile.range(), array_tile.range());
for (std::size_t i = 0ul; i < eval_tile.size(); ++i) {
BOOST_CHECK_EQUAL(eval_tile[i], 5 * 3 * array_tile[i]);
}
}
}
BOOST_AUTO_TEST_CASE(perm_eval) {
// Create permutation to be applied in the array evaluations
std::array<std::size_t, GlobalFixture::dim> p;
for (std::size_t i = 0; i < p.size(); ++i)
p[i] = (i + p.size() - 1) % p.size();
const Permutation perm(p.begin(), p.end());
/// Construct a scaling unary evaluator
auto dist_eval = make_unary_eval(arg, arg.world(), DenseShape(), arg.pmap(),
Permutation(), make_scal0(3));
/// Construct a two-step, scaling unary evaluator
auto dist_eval2 =
make_unary_eval(dist_eval, dist_eval.world(), DenseShape(),
dist_eval.pmap(), perm, make_scal1(5, perm));
BOOST_REQUIRE_NO_THROW(dist_eval2.eval());
BOOST_REQUIRE_NO_THROW(dist_eval2.wait());
// Check that each tile has been properly scaled and permuted.
const Permutation inv_perm = -perm;
for (auto index : *dist_eval2.pmap()) {
// Get the original type
const TensorI array_tile =
array.find(inv_perm * dist_eval2.range().idx(index));
// Get the array evaluator tile.
Future<TensorI> tile;
BOOST_REQUIRE_NO_THROW(tile = dist_eval2.get(index));
// Force the evaluation of the tile
TensorI eval_tile;
BOOST_REQUIRE_NO_THROW(eval_tile = tile.get());
// Check that the result tile is correctly modified.
BOOST_CHECK_EQUAL(eval_tile.range(),
dist_eval2.trange().make_tile_range(index));
BOOST_CHECK_EQUAL(eval_tile.range(), perm * array_tile.range());
for (std::size_t i = 0ul; i < eval_tile.size(); ++i) {
BOOST_CHECK_EQUAL(eval_tile[perm * array_tile.range().idx(i)],
5 * 3 * array_tile[i]);
}
}
}
BOOST_AUTO_TEST_SUITE_END()
|