File: dist_eval_unary_eval.cpp

package info (click to toggle)
tiledarray 1.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 9,568 kB
  • sloc: cpp: 53,449; javascript: 1,599; sh: 393; ansic: 226; python: 223; xml: 195; makefile: 36
file content (278 lines) | stat: -rw-r--r-- 10,536 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
/*
 *  This file is a part of TiledArray.
 *  Copyright (C) 2013  Virginia Tech
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  Justus Calvin
 *  Department of Chemistry, Virginia Tech
 *
 *  unary_eval.cpp
 *  August 8, 2013
 *
 */

#include <array_fixture.h>

#include "TiledArray/dist_eval/unary_eval.h"
#include "tiledarray.h"
#include "unit_test_config.h"

using namespace TiledArray;
using namespace TiledArray::expressions;
using TiledArray::detail::Noop;
using TiledArray::detail::Scal;
using TiledArray::detail::UnaryWrapper;

// Array evaluator fixture
struct UnaryEvalImplFixture : public TiledRangeFixture {
  typedef Noop<TArrayI::value_type, TArrayI::value_type, true>
      array_op_base_type;
  typedef UnaryWrapper<array_op_base_type> array_op_type;
  typedef TiledArray::detail::DistEval<
      TiledArray::detail::LazyArrayTile<TArrayI::value_type, array_op_type>,
      DensePolicy>
      dist_eval_type;

  UnaryEvalImplFixture()
      : array(*GlobalFixture::world, tr),
        arg(make_array_eval(array, array.world(), DenseShape(), array.pmap(),
                            Permutation(),
                            array_op_type(array_op_base_type()))) {
    // Fill array with random data
    for (TArrayI::iterator it = array.begin(); it != array.end(); ++it) {
      TensorI tile(array.trange().make_tile_range(it.index()));
      for (TensorI::iterator tile_it = tile.begin(); tile_it != tile.end();
           ++tile_it)
        *tile_it = GlobalFixture::world->rand() % 101;
      *it = tile;
    }
  }

  ~UnaryEvalImplFixture() {}

  static UnaryWrapper<Noop<TensorI, TensorI, true> > make_array_noop(
      const Permutation& perm = Permutation()) {
    return UnaryWrapper<Noop<TensorI, TensorI, true> >(
        Noop<TensorI, TensorI, true>(), perm);
  }

  static UnaryWrapper<Scal<TensorI, TensorI, int, true> > make_scal1(
      const int factor, const Permutation& perm = Permutation()) {
    return UnaryWrapper<Scal<TensorI, TensorI, int, true> >(
        Scal<TensorI, TensorI, int, true>(factor), perm);
  }

  static UnaryWrapper<Scal<TensorI, TensorI, int, false> > make_scal0(
      const int factor, const Permutation& perm = Permutation()) {
    return UnaryWrapper<Scal<TensorI, TensorI, int, false> >(
        Scal<TensorI, TensorI, int, false>(factor), perm);
  }

  template <typename Tile, typename Policy, typename Op>
  static TiledArray::detail::DistEval<
      TiledArray::detail::LazyArrayTile<
          typename DistArray<Tile, Policy>::value_type, Op>,
      Policy>
  make_array_eval(
      const DistArray<Tile, Policy>& array, TiledArray::World& world,
      const typename TiledArray::detail::DistEval<Tile, Policy>::shape_type&
          shape,
      const std::shared_ptr<
          typename TiledArray::detail::DistEval<Tile, Policy>::pmap_interface>&
          pmap,
      const Permutation& perm, const Op& op) {
    typedef TiledArray::detail::ArrayEvalImpl<DistArray<Tile, Policy>, Op,
                                              Policy>
        impl_type;
    return TiledArray::detail::DistEval<
        TiledArray::detail::LazyArrayTile<
            typename TiledArray::DistArray<Tile, Policy>::value_type, Op>,
        Policy>(std::shared_ptr<impl_type>(new impl_type(
        array, world, (perm ? perm * array.trange() : array.trange()), shape,
        pmap, perm, op)));
  }

  template <typename Tile, typename Policy, typename Op>
  static TiledArray::detail::DistEval<typename Op::result_type, Policy>
  make_unary_eval(
      const TiledArray::detail::DistEval<Tile, Policy>& arg,
      TiledArray::World& world,
      const typename TiledArray::detail::DistEval<Tile, Policy>::shape_type&
          shape,
      const std::shared_ptr<
          typename TiledArray::detail::DistEval<Tile, Policy>::pmap_interface>&
          pmap,
      const Permutation& perm, const Op& op) {
    typedef TiledArray::detail::UnaryEvalImpl<
        TiledArray::detail::DistEval<Tile, Policy>, Op, Policy>
        impl_type;
    return TiledArray::detail::DistEval<typename Op::result_type, Policy>(
        std::shared_ptr<impl_type>(new impl_type(
            arg, world, (perm ? perm * arg.trange() : arg.trange()), shape,
            pmap, perm, op)));
  }

  TArrayI array;
  dist_eval_type arg;
};  // ArrayEvalFixture

BOOST_FIXTURE_TEST_SUITE(unary_eval_suite, UnaryEvalImplFixture)

BOOST_AUTO_TEST_CASE(constructor) {
  BOOST_REQUIRE_NO_THROW(make_unary_eval(arg, arg.world(), DenseShape(),
                                         arg.pmap(), Permutation(),
                                         make_scal0(3)));

  auto unary = make_unary_eval(arg, arg.world(), DenseShape(), arg.pmap(),
                               Permutation(), make_scal0(3));

  BOOST_CHECK_EQUAL(&unary.world(), GlobalFixture::world);
  BOOST_CHECK(unary.pmap() == arg.pmap());
  BOOST_CHECK_EQUAL(unary.range(), tr.tiles_range());
  BOOST_CHECK_EQUAL(unary.trange(), tr);
  BOOST_CHECK_EQUAL(unary.size(), tr.tiles_range().volume());
  BOOST_CHECK(unary.is_dense());
  for (std::size_t i = 0; i < tr.tiles_range().volume(); ++i)
    BOOST_CHECK(!unary.is_zero(i));

  BOOST_REQUIRE_NO_THROW(make_unary_eval(unary, unary.world(), DenseShape(),
                                         arg.pmap(), Permutation(),
                                         make_scal0(5)));

  auto unary2 = make_unary_eval(unary, unary.world(), DenseShape(),
                                unary.pmap(), Permutation(), make_scal0(5));

  BOOST_CHECK_EQUAL(&unary2.world(), GlobalFixture::world);
  BOOST_CHECK(unary2.pmap() == arg.pmap());
  BOOST_CHECK_EQUAL(unary2.range(), tr.tiles_range());
  BOOST_CHECK_EQUAL(unary2.trange(), tr);
  BOOST_CHECK_EQUAL(unary2.size(), tr.tiles_range().volume());
  BOOST_CHECK(unary2.is_dense());
  for (std::size_t i = 0; i < tr.tiles_range().volume(); ++i)
    BOOST_CHECK(!unary2.is_zero(i));
}

BOOST_AUTO_TEST_CASE(eval) {
  auto dist_eval = make_unary_eval(arg, arg.world(), DenseShape(), arg.pmap(),
                                   Permutation(), make_scal0(3));

  BOOST_REQUIRE_NO_THROW(dist_eval.eval());
  BOOST_REQUIRE_NO_THROW(dist_eval.wait());

  // Check that each tile has been properly scaled.
  for (auto index : *dist_eval.pmap()) {
    // Get the original type
    TensorI array_tile = array.find(index);

    // Get the array evaluator tile.
    Future<TensorI> tile;
    BOOST_REQUIRE_NO_THROW(tile = dist_eval.get(index));

    // Force the evaluation of the tile
    TensorI eval_tile;
    BOOST_REQUIRE_NO_THROW(eval_tile = tile.get());

    // Check that the result tile is correctly modified.
    BOOST_CHECK_EQUAL(eval_tile.range(),
                      dist_eval.trange().make_tile_range(index));
    BOOST_CHECK_EQUAL(eval_tile.range(), array_tile.range());
    for (std::size_t i = 0ul; i < eval_tile.size(); ++i) {
      BOOST_CHECK_EQUAL(eval_tile[i], 3 * array_tile[i]);
    }
  }
}

BOOST_AUTO_TEST_CASE(double_eval) {
  /// Construct a scaling unary evaluator
  auto dist_eval = make_unary_eval(arg, arg.world(), DenseShape(), arg.pmap(),
                                   Permutation(), make_scal0(3));

  /// Construct a two-step, scaling unary evaluator
  auto dist_eval2 =
      make_unary_eval(dist_eval, dist_eval.world(), DenseShape(),
                      dist_eval.pmap(), Permutation(), make_scal1(5));

  BOOST_REQUIRE_NO_THROW(dist_eval2.eval());
  BOOST_REQUIRE_NO_THROW(dist_eval2.wait());

  // Check that each tile has been properly scaled.
  for (auto index : *dist_eval2.pmap()) {
    // Get the original type
    TensorI array_tile = array.find(index);

    // Get the array evaluator tile.
    Future<TensorI> tile;
    BOOST_REQUIRE_NO_THROW(tile = dist_eval2.get(index));

    // Wait the evaluation of the tile
    TensorI eval_tile;
    BOOST_REQUIRE_NO_THROW(eval_tile = tile.get());

    // Check that the result tile is correctly modified.
    BOOST_CHECK_EQUAL(eval_tile.range(),
                      dist_eval2.trange().make_tile_range(index));
    BOOST_CHECK_EQUAL(eval_tile.range(), array_tile.range());
    for (std::size_t i = 0ul; i < eval_tile.size(); ++i) {
      BOOST_CHECK_EQUAL(eval_tile[i], 5 * 3 * array_tile[i]);
    }
  }
}

BOOST_AUTO_TEST_CASE(perm_eval) {
  // Create permutation to be applied in the array evaluations
  std::array<std::size_t, GlobalFixture::dim> p;
  for (std::size_t i = 0; i < p.size(); ++i)
    p[i] = (i + p.size() - 1) % p.size();
  const Permutation perm(p.begin(), p.end());

  /// Construct a scaling unary evaluator
  auto dist_eval = make_unary_eval(arg, arg.world(), DenseShape(), arg.pmap(),
                                   Permutation(), make_scal0(3));

  /// Construct a two-step, scaling unary evaluator
  auto dist_eval2 =
      make_unary_eval(dist_eval, dist_eval.world(), DenseShape(),
                      dist_eval.pmap(), perm, make_scal1(5, perm));

  BOOST_REQUIRE_NO_THROW(dist_eval2.eval());
  BOOST_REQUIRE_NO_THROW(dist_eval2.wait());

  // Check that each tile has been properly scaled and permuted.
  const Permutation inv_perm = -perm;
  for (auto index : *dist_eval2.pmap()) {
    // Get the original type
    const TensorI array_tile =
        array.find(inv_perm * dist_eval2.range().idx(index));

    // Get the array evaluator tile.
    Future<TensorI> tile;
    BOOST_REQUIRE_NO_THROW(tile = dist_eval2.get(index));

    // Force the evaluation of the tile
    TensorI eval_tile;
    BOOST_REQUIRE_NO_THROW(eval_tile = tile.get());

    // Check that the result tile is correctly modified.
    BOOST_CHECK_EQUAL(eval_tile.range(),
                      dist_eval2.trange().make_tile_range(index));
    BOOST_CHECK_EQUAL(eval_tile.range(), perm * array_tile.range());
    for (std::size_t i = 0ul; i < eval_tile.size(); ++i) {
      BOOST_CHECK_EQUAL(eval_tile[perm * array_tile.range().idx(i)],
                        5 * 3 * array_tile[i]);
    }
  }
}

BOOST_AUTO_TEST_SUITE_END()