File: expressions_mixed.cpp

package info (click to toggle)
tiledarray 1.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 9,568 kB
  • sloc: cpp: 53,449; javascript: 1,599; sh: 393; ansic: 226; python: 223; xml: 195; makefile: 36
file content (240 lines) | stat: -rw-r--r-- 8,294 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
/*
 *  This file is a part of TiledArray.
 *  Copyright (C) 2013  Virginia Tech
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  Justus Calvin, Edward Valeev
 *  Department of Chemistry, Virginia Tech
 *
 *  expressions_mixed.cpp
 *  May 10, 2013
 *
 */

#include "TiledArray/special/kronecker_delta.h"
#include "range_fixture.h"
#include "sparse_tile.h"
#include "tiledarray.h"
#include "unit_test_config.h"

using namespace TiledArray;

template <long id>
struct tag {};

struct MixedExpressionsFixture : public TiledRangeFixture {
  typedef DistArray<EigenSparseTile<double, tag<0>>, DensePolicy> TArrayDS1;
  typedef DistArray<EigenSparseTile<double, tag<1>>, DensePolicy> TArrayDS2;
  typedef DistArray<KroneckerDeltaTile<1>, DensePolicy>
      ArrayKronDelta1;  // will be turned into SparsePolicy next

  MixedExpressionsFixture()
      : u(*GlobalFixture::world, trange2),
        u2(*GlobalFixture::world, trange4),
        e2(*GlobalFixture::world, trange2e),
        e4(*GlobalFixture::world, trange4e),
        v(*GlobalFixture::world, trange2),
        w(*GlobalFixture::world, trange2),
        delta1(*GlobalFixture::world, trange2, DenseShape(),
               std::make_shared<detail::ReplicatedPmap>(
                   *GlobalFixture::world, trange2.tiles_range().volume())),
        delta1e(*GlobalFixture::world, trange2e, DenseShape(),
                std::make_shared<detail::ReplicatedPmap>(
                    *GlobalFixture::world, trange2e.tiles_range().volume())) {
    random_fill(u);
    random_fill(v);
    u2.fill(0);
    random_fill(e2);
    e4.fill(0);
    init_kronecker_delta(delta1);
    init_kronecker_delta(delta1e);
    GlobalFixture::world->gop.fence();
  }

  template <typename Tile>
  static void random_fill(DistArray<Tile>& array) {
    typename DistArray<Tile>::pmap_interface::const_iterator it =
        array.pmap()->begin();
    typename DistArray<Tile>::pmap_interface::const_iterator end =
        array.pmap()->end();
    for (; it != end; ++it)
      array.set(*it, array.world().taskq.add(
                         &MixedExpressionsFixture::template make_rand_tile<
                             DistArray<Tile>>,
                         array.trange().make_tile_range(*it)));
  }

  template <typename T>
  static void set_random(T& t) {
    // with 50% generate nonzero integer value in [0,101)
    auto rand_int = GlobalFixture::world->rand();
    t = (rand_int < 0x8fffff) ? rand_int % 101 : 0;
  }

  template <typename T>
  static void set_random(std::complex<T>& t) {
    // with 50% generate nonzero value
    auto rand_int1 = GlobalFixture::world->rand();
    if (rand_int1 < 0x8ffffful) {
      t = std::complex<T>{T(rand_int1 % 101),
                          T(GlobalFixture::world->rand() % 101)};
    } else
      t = std::complex<T>{0, 0};
  }

  // Fill a tile with random data
  template <typename A>
  static typename A::value_type make_rand_tile(
      const typename A::value_type::range_type& r) {
    typename A::value_type tile(r);
    for (const auto& i : r) {
      set_random(tile[i]);
    }
    return tile;
  }

  template <typename M, typename A>
  static void rand_fill_matrix_and_array(M& matrix, A& array, int seed = 42) {
    TA_ASSERT(std::size_t(matrix.size()) == array.trange().elements().volume());
    matrix.fill(0);

    GlobalFixture::world->srand(seed);

    // Iterate over local tiles
    for (typename A::iterator it = array.begin(); it != array.end(); ++it) {
      typename A::value_type tile(array.trange().make_tile_range(it.index()));
      for (Range::const_iterator rit = tile.range().begin();
           rit != tile.range().end(); ++rit) {
        const std::size_t elem_index = array.elements().ordinal(*rit);
        tile[*rit] =
            (matrix.array()(elem_index) = (GlobalFixture::world->rand() % 101));
      }
      *it = tile;
    }
    GlobalFixture::world->gop.sum(&matrix(0, 0), matrix.size());
  }

  template <typename Tile>
  Eigen::Matrix<int, Eigen::Dynamic, Eigen::Dynamic> make_matrix(
      DistArray<Tile>& array) {
    // Check that the array will fit in a matrix or vector

    // Construct the Eigen matrix
    Eigen::Matrix<int, Eigen::Dynamic, Eigen::Dynamic> matrix(
        array.trange().elements().extent_data()[0],
        (array.trange().tiles().rank() == 2
             ? array.trange().elements().extent_data()[1]
             : 1));

    // Spawn tasks to copy array tiles to the Eigen matrix
    for (std::size_t i = 0; i < array.size(); ++i) {
      if (!array.is_zero(i))
        tensor_to_eigen_submatrix(array.find(i).get(), matrix);
    }

    return matrix;
  }

  template <typename Tile, typename Policy>
  static void init_kronecker_delta(DistArray<Tile, Policy>& array) {
    array.init_tiles(
        [=](const TiledArray::Range& range) { return Tile(range); });
  }

  ~MixedExpressionsFixture() { GlobalFixture::world->gop.fence(); }

  const static TiledRange trange1;
  const static TiledRange trange2;
  const static TiledRange trange4;
  const static TiledRange trange2e;  // all dimensions are equivalent, to make
                                     // easier testing delta and permutations
  const static TiledRange trange4e;  // all dimensions are equivalent
  TArrayD u;
  TArrayD u1;
  TArrayD u2;
  TArrayD e2;
  TArrayD e4;
  TArrayDS1 v;
  TArrayDS1 v1;
  TArrayDS2 w;
  ArrayKronDelta1 delta1;
  ArrayKronDelta1 delta1e;
};  // MixedExpressionsFixture

// Instantiate static variables for fixture
const TiledRange MixedExpressionsFixture::trange1{{0, 2, 5, 10, 17, 28, 41}};
const TiledRange MixedExpressionsFixture::trange2{{0, 2, 5, 10, 17, 28, 41},
                                                  {0, 3, 6, 11, 18, 29, 42}};
const TiledRange MixedExpressionsFixture::trange4{
    trange2.data()[0], trange2.data()[1], trange2.data()[0], trange2.data()[1]};
const TiledRange MixedExpressionsFixture::trange2e{trange1.data()[0],
                                                   trange1.data()[0]};
const TiledRange MixedExpressionsFixture::trange4e{
    trange2e.data()[0], trange2e.data()[1], trange2e.data()[0],
    trange2e.data()[1]};

BOOST_FIXTURE_TEST_SUITE(mixed_expressions_suite, MixedExpressionsFixture)

BOOST_AUTO_TEST_CASE(tensor_factories) {
  BOOST_CHECK_NO_THROW(w("a,b") = u("b,a"));
  BOOST_CHECK_NO_THROW(v("a,b") = w("b,a"));
  BOOST_CHECK_NO_THROW(u("a,b") = v("b,a"));
}

BOOST_AUTO_TEST_CASE(add_factories) {
  // compile error: dense + sparse = dense, not sparse
  // BOOST_CHECK_NO_THROW(w("a,b") = u("a,b") + v("a,b"));

  // ok
  BOOST_CHECK_NO_THROW(u1("a,b") = u("a,b") + v("a,b"));
}

BOOST_AUTO_TEST_CASE(mult_factories) {
#if MULT_DENSE_SPARSE_TO_SPARSE
  // compile error: dense * sparse = sparse, not dense
  // BOOST_CHECK_NO_THROW(u1("a,b") = u("a,b") * v("a,b"));

  // ok
  BOOST_CHECK_NO_THROW(v1("a,b") = u("a,b") * v("a,b"));
#else
  // ok
  BOOST_CHECK_NO_THROW(u1("a,b") = u("a,b") * v("a,b"));

  // compile error: dense * sparse = dense, not sparse
  // BOOST_CHECK_NO_THROW(v1("a,b") = u("a,b") * v("a,b"));
#endif

  // compile error: dense * sparse1 != sparse2
  // BOOST_CHECK_NO_THROW(w("a,b") = u("a,b") * v("a,b"));
}

BOOST_AUTO_TEST_CASE(outer_product_factories) {
#if !MULT_DENSE_SPARSE_TO_SPARSE
  // ok
  BOOST_CHECK_NO_THROW(u2("a,b,c,d") += u("a,b") * v("c,d"));
#endif

  // these can only work if nproc == 1 since KroneckerDelta does not travel, and
  // SUMMA does not support replicated args
  if (GlobalFixture::world->nproc() == 1) {
    // ok
    BOOST_CHECK_NO_THROW(u2("a,b,c,d") += delta1("a,b") * u("c,d"));

    // ok
    BOOST_CHECK_NO_THROW(e4("a,c,b,d") += delta1e("a,b") * e2("c,d"));
  }
}

BOOST_AUTO_TEST_SUITE_END()