1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
/*
* This file is a part of TiledArray.
* Copyright (C) 2013 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Justus Calvin, Edward Valeev
* Department of Chemistry, Virginia Tech
*
* expressions_mixed.cpp
* May 10, 2013
*
*/
#include "TiledArray/special/kronecker_delta.h"
#include "range_fixture.h"
#include "sparse_tile.h"
#include "tiledarray.h"
#include "unit_test_config.h"
using namespace TiledArray;
template <long id>
struct tag {};
struct MixedExpressionsFixture : public TiledRangeFixture {
typedef DistArray<EigenSparseTile<double, tag<0>>, DensePolicy> TArrayDS1;
typedef DistArray<EigenSparseTile<double, tag<1>>, DensePolicy> TArrayDS2;
typedef DistArray<KroneckerDeltaTile<1>, DensePolicy>
ArrayKronDelta1; // will be turned into SparsePolicy next
MixedExpressionsFixture()
: u(*GlobalFixture::world, trange2),
u2(*GlobalFixture::world, trange4),
e2(*GlobalFixture::world, trange2e),
e4(*GlobalFixture::world, trange4e),
v(*GlobalFixture::world, trange2),
w(*GlobalFixture::world, trange2),
delta1(*GlobalFixture::world, trange2, DenseShape(),
std::make_shared<detail::ReplicatedPmap>(
*GlobalFixture::world, trange2.tiles_range().volume())),
delta1e(*GlobalFixture::world, trange2e, DenseShape(),
std::make_shared<detail::ReplicatedPmap>(
*GlobalFixture::world, trange2e.tiles_range().volume())) {
random_fill(u);
random_fill(v);
u2.fill(0);
random_fill(e2);
e4.fill(0);
init_kronecker_delta(delta1);
init_kronecker_delta(delta1e);
GlobalFixture::world->gop.fence();
}
template <typename Tile>
static void random_fill(DistArray<Tile>& array) {
typename DistArray<Tile>::pmap_interface::const_iterator it =
array.pmap()->begin();
typename DistArray<Tile>::pmap_interface::const_iterator end =
array.pmap()->end();
for (; it != end; ++it)
array.set(*it, array.world().taskq.add(
&MixedExpressionsFixture::template make_rand_tile<
DistArray<Tile>>,
array.trange().make_tile_range(*it)));
}
template <typename T>
static void set_random(T& t) {
// with 50% generate nonzero integer value in [0,101)
auto rand_int = GlobalFixture::world->rand();
t = (rand_int < 0x8fffff) ? rand_int % 101 : 0;
}
template <typename T>
static void set_random(std::complex<T>& t) {
// with 50% generate nonzero value
auto rand_int1 = GlobalFixture::world->rand();
if (rand_int1 < 0x8ffffful) {
t = std::complex<T>{T(rand_int1 % 101),
T(GlobalFixture::world->rand() % 101)};
} else
t = std::complex<T>{0, 0};
}
// Fill a tile with random data
template <typename A>
static typename A::value_type make_rand_tile(
const typename A::value_type::range_type& r) {
typename A::value_type tile(r);
for (const auto& i : r) {
set_random(tile[i]);
}
return tile;
}
template <typename M, typename A>
static void rand_fill_matrix_and_array(M& matrix, A& array, int seed = 42) {
TA_ASSERT(std::size_t(matrix.size()) == array.trange().elements().volume());
matrix.fill(0);
GlobalFixture::world->srand(seed);
// Iterate over local tiles
for (typename A::iterator it = array.begin(); it != array.end(); ++it) {
typename A::value_type tile(array.trange().make_tile_range(it.index()));
for (Range::const_iterator rit = tile.range().begin();
rit != tile.range().end(); ++rit) {
const std::size_t elem_index = array.elements().ordinal(*rit);
tile[*rit] =
(matrix.array()(elem_index) = (GlobalFixture::world->rand() % 101));
}
*it = tile;
}
GlobalFixture::world->gop.sum(&matrix(0, 0), matrix.size());
}
template <typename Tile>
Eigen::Matrix<int, Eigen::Dynamic, Eigen::Dynamic> make_matrix(
DistArray<Tile>& array) {
// Check that the array will fit in a matrix or vector
// Construct the Eigen matrix
Eigen::Matrix<int, Eigen::Dynamic, Eigen::Dynamic> matrix(
array.trange().elements().extent_data()[0],
(array.trange().tiles().rank() == 2
? array.trange().elements().extent_data()[1]
: 1));
// Spawn tasks to copy array tiles to the Eigen matrix
for (std::size_t i = 0; i < array.size(); ++i) {
if (!array.is_zero(i))
tensor_to_eigen_submatrix(array.find(i).get(), matrix);
}
return matrix;
}
template <typename Tile, typename Policy>
static void init_kronecker_delta(DistArray<Tile, Policy>& array) {
array.init_tiles(
[=](const TiledArray::Range& range) { return Tile(range); });
}
~MixedExpressionsFixture() { GlobalFixture::world->gop.fence(); }
const static TiledRange trange1;
const static TiledRange trange2;
const static TiledRange trange4;
const static TiledRange trange2e; // all dimensions are equivalent, to make
// easier testing delta and permutations
const static TiledRange trange4e; // all dimensions are equivalent
TArrayD u;
TArrayD u1;
TArrayD u2;
TArrayD e2;
TArrayD e4;
TArrayDS1 v;
TArrayDS1 v1;
TArrayDS2 w;
ArrayKronDelta1 delta1;
ArrayKronDelta1 delta1e;
}; // MixedExpressionsFixture
// Instantiate static variables for fixture
const TiledRange MixedExpressionsFixture::trange1{{0, 2, 5, 10, 17, 28, 41}};
const TiledRange MixedExpressionsFixture::trange2{{0, 2, 5, 10, 17, 28, 41},
{0, 3, 6, 11, 18, 29, 42}};
const TiledRange MixedExpressionsFixture::trange4{
trange2.data()[0], trange2.data()[1], trange2.data()[0], trange2.data()[1]};
const TiledRange MixedExpressionsFixture::trange2e{trange1.data()[0],
trange1.data()[0]};
const TiledRange MixedExpressionsFixture::trange4e{
trange2e.data()[0], trange2e.data()[1], trange2e.data()[0],
trange2e.data()[1]};
BOOST_FIXTURE_TEST_SUITE(mixed_expressions_suite, MixedExpressionsFixture)
BOOST_AUTO_TEST_CASE(tensor_factories) {
BOOST_CHECK_NO_THROW(w("a,b") = u("b,a"));
BOOST_CHECK_NO_THROW(v("a,b") = w("b,a"));
BOOST_CHECK_NO_THROW(u("a,b") = v("b,a"));
}
BOOST_AUTO_TEST_CASE(add_factories) {
// compile error: dense + sparse = dense, not sparse
// BOOST_CHECK_NO_THROW(w("a,b") = u("a,b") + v("a,b"));
// ok
BOOST_CHECK_NO_THROW(u1("a,b") = u("a,b") + v("a,b"));
}
BOOST_AUTO_TEST_CASE(mult_factories) {
#if MULT_DENSE_SPARSE_TO_SPARSE
// compile error: dense * sparse = sparse, not dense
// BOOST_CHECK_NO_THROW(u1("a,b") = u("a,b") * v("a,b"));
// ok
BOOST_CHECK_NO_THROW(v1("a,b") = u("a,b") * v("a,b"));
#else
// ok
BOOST_CHECK_NO_THROW(u1("a,b") = u("a,b") * v("a,b"));
// compile error: dense * sparse = dense, not sparse
// BOOST_CHECK_NO_THROW(v1("a,b") = u("a,b") * v("a,b"));
#endif
// compile error: dense * sparse1 != sparse2
// BOOST_CHECK_NO_THROW(w("a,b") = u("a,b") * v("a,b"));
}
BOOST_AUTO_TEST_CASE(outer_product_factories) {
#if !MULT_DENSE_SPARSE_TO_SPARSE
// ok
BOOST_CHECK_NO_THROW(u2("a,b,c,d") += u("a,b") * v("c,d"));
#endif
// these can only work if nproc == 1 since KroneckerDelta does not travel, and
// SUMMA does not support replicated args
if (GlobalFixture::world->nproc() == 1) {
// ok
BOOST_CHECK_NO_THROW(u2("a,b,c,d") += delta1("a,b") * u("c,d"));
// ok
BOOST_CHECK_NO_THROW(e4("a,c,b,d") += delta1e("a,b") * e2("c,d"));
}
}
BOOST_AUTO_TEST_SUITE_END()
|