1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
|
/*
* This file is a part of TiledArray.
* Copyright (C) 2015 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef TILEDARRAY_TEST_SPARSE_TILE_H__INCLUDED
#define TILEDARRAY_TEST_SPARSE_TILE_H__INCLUDED
#include <Eigen/SparseCore>
#include <memory>
#include <tuple>
#include <tiledarray.h>
#include <TiledArray/external/madness.h>
// Array class
#include <TiledArray/tensor.h>
#include <TiledArray/tile.h>
#include <TiledArray/tile_op/tile_interface.h>
// Array policy classes
#include <TiledArray/policies/dense_policy.h>
#include <TiledArray/policies/sparse_policy.h>
// sparse 2-dimensional matrix type, with tag type thrown in to make expression
// engine work harder
template <typename T, typename TagType = std::tuple<>>
class EigenSparseTile {
public:
// Concept typedefs
typedef TiledArray::Range range_type; // Tensor range type
typedef T value_type; // Element type
typedef T numeric_type; // The scalar type that is compatible with value_type
typedef size_t size_type; // Size type
// other typedefs
typedef Eigen::SparseMatrix<T, Eigen::RowMajor> matrix_type;
typedef std::tuple<matrix_type, range_type> impl_type;
public:
/// makes an uninitialized matrix
EigenSparseTile() = default;
/// Shallow copy constructor; see EigenSparseTile::clone() for deep copy
EigenSparseTile(const EigenSparseTile&) = default;
/// Shallow assignment operator; see EigenSparseTile::clone() for deep copy
EigenSparseTile& operator=(const EigenSparseTile& other) = default;
/// makes an uninitialized matrix
explicit EigenSparseTile(const range_type& r)
: impl_(std::make_shared<impl_type>(
std::make_tuple(matrix_type(r.extent()[0], r.extent()[1]), r))) {
TA_ASSERT(r.extent()[0] > 0);
TA_ASSERT(r.extent()[1] > 0);
}
/// ctor using sparse matrix
EigenSparseTile(matrix_type&& mat, const range_type& range)
: impl_(std::make_shared<impl_type>(
std::make_tuple(std::move(mat), range))) {
using extent_type = typename range_type::extent_type::value_type;
TA_ASSERT(static_cast<extent_type>(mat.rows()) == range.extent()[0]);
TA_ASSERT(static_cast<extent_type>(mat.cols()) == range.extent()[1]);
}
/// ctor using sparse matrix
EigenSparseTile(const matrix_type& mat, const range_type& range)
: impl_(std::make_shared<impl_type>(std::make_tuple(mat, range))) {
using extent_type = typename range_type::extent_type::value_type;
TA_ASSERT(static_cast<extent_type>(mat.rows()) == range.extent()[0]);
TA_ASSERT(static_cast<extent_type>(mat.cols()) == range.extent()[1]);
}
// Deep copy
EigenSparseTile clone() const {
EigenSparseTile result;
result.impl_ = std::make_shared<impl_type>(*(this->impl_));
return result;
}
// copies
template <typename AnotherTagType>
explicit operator EigenSparseTile<T, AnotherTagType>() const {
return EigenSparseTile<T, AnotherTagType>{this->data(), this->range()};
}
explicit operator TiledArray::Tensor<T>() const {
TiledArray::Tensor<T> result(this->range(), T(0));
auto nrows = range().extent()[0];
auto ncols = range().extent()[1];
Eigen::Map<
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>,
Eigen::AutoAlign>
result_view(result.data(), nrows, ncols);
result_view = data();
return result;
}
// Tile range accessor
const range_type& range() const { return std::get<1>(*impl_); }
// const data matrix access
const matrix_type& data() const { return std::get<0>(*impl_); }
// const data matrix access
matrix_type& data() { return std::get<0>(*impl_); }
/// data read-write accessor
template <typename Index>
value_type& operator[](const Index& idx) {
auto start = range().lobound_data();
return std::get<0>(*impl_).coeffRef(idx[0] - start[0], idx[1] - start[1]);
}
/// Maximum # of elements in the tile
size_type size() const { return std::get<0>(*impl_).volume(); }
// Initialization check. False if the tile is fully initialized.
// bool empty() const {
// return impl_.get() == nullptr;
//}
// MADNESS compliant serialization
// output
template <typename Archive,
typename std::enable_if<madness::archive::is_output_archive<
Archive>::value>::type* = nullptr>
void serialize(Archive& ar) {
if (impl_) {
ar & true;
auto mat = this->data();
std::vector<Eigen::Triplet<T>> datavec;
datavec.reserve(mat.size());
typedef typename matrix_type::Index idx_t;
for (idx_t k = 0; k < mat.outerSize(); ++k)
for (typename matrix_type::InnerIterator it(mat, k); it; ++it) {
datavec.push_back(Eigen::Triplet<T>(it.row(), it.col(), it.value()));
}
ar& datavec & this->range();
} else {
ar & false;
}
}
// output
template <typename Archive,
typename std::enable_if<madness::archive::is_input_archive<
Archive>::value>::type* = nullptr>
void serialize(Archive& ar) {
bool have_impl = false;
ar& have_impl;
if (have_impl) {
std::vector<Eigen::Triplet<T>> datavec;
range_type range;
ar& datavec& range;
auto extents = range.extent();
matrix_type mat(extents[0], extents[1]);
mat.setFromTriplets(datavec.begin(), datavec.end());
impl_ = std::make_shared<impl_type>(
std::make_pair(std::move(mat), std::move(range)));
} else {
impl_ = 0;
}
}
// Scaling operations
// result[i] = (*this)[i] * factor
EigenSparseTile scale(const numeric_type factor) const;
// result[perm ^ i] = (*this)[i] * factor
EigenSparseTile scale(const numeric_type factor,
const TiledArray::Permutation& perm) const;
// (*this)[i] *= factor
EigenSparseTile& scale_to(const numeric_type factor) const;
private:
std::shared_ptr<impl_type> impl_;
}; // class EigenSparseTile
// Permutation operation
// returns a tile for which result[perm ^ i] = tile[i]
template <typename T, typename TagType>
EigenSparseTile<T, TagType> permute(const EigenSparseTile<T, TagType>& tile,
const TiledArray::Permutation& perm) {
TA_ASSERT(perm[0] != 0);
return EigenSparseTile<T, TagType>(tile.data().transpose(),
perm * tile.range());
}
// Addition operations
// sparse_result[i] = sparse_arg1[i] + sparse_arg2[i]
template <typename T, typename TagType>
EigenSparseTile<T, TagType> add(const EigenSparseTile<T, TagType>& arg1,
const EigenSparseTile<T, TagType>& arg2) {
TA_ASSERT(arg1.range() == arg2.range());
return EigenSparseTile<T, TagType>(arg1.data() + arg2.data(), arg1.range());
}
// dense_result[i] = dense_arg1[i] + sparse_arg2[i]
template <typename T, typename TagType>
TiledArray::Tensor<T> add(const TiledArray::Tensor<T>& arg1,
const EigenSparseTile<T, TagType>& arg2) {
TA_ASSERT(arg1.range() == arg2.range());
// this could be done better ...
return TiledArray::add(arg1, static_cast<TiledArray::Tensor<T>>(arg2));
}
// dense_result[i] = sparse_arg1[i] + dense_arg2[i]
template <typename T, typename TagType>
TiledArray::Tensor<T> add(const EigenSparseTile<T, TagType>& arg1,
const TiledArray::Tensor<T>& arg2) {
return TiledArray::add(arg2, arg1);
}
// dense_result[perm ^ i] = dense_arg1[i] + sparse_arg2[i]
template <typename T, typename TagType>
TiledArray::Tensor<T> add(const TiledArray::Tensor<T>& arg1,
const EigenSparseTile<T, TagType>& arg2,
const TiledArray::Permutation& perm) {
TA_ASSERT(arg1.range() == arg2.range());
// this could be done better ...
return TiledArray::permute(
TiledArray::add(arg1, static_cast<TiledArray::Tensor<T>>(arg2)), perm);
}
// sparse_result[i] += sparse_arg[i]
template <typename T, typename TagType>
EigenSparseTile<T, TagType>& add_to(EigenSparseTile<T, TagType>& result,
const EigenSparseTile<T, TagType>& arg) {
TA_ASSERT(result.range() == arg.range());
result.data() += arg.data();
return result;
}
// dense_result[i] += sparse_arg[i]
template <typename T, typename TagType>
TiledArray::Tensor<T>& add_to(TiledArray::Tensor<T>& result,
const EigenSparseTile<T, TagType>& arg) {
TA_ASSERT(result.range() == arg.range());
auto nrows = result.range().extent()[0];
auto ncols = result.range().extent()[1];
Eigen::Map<Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>,
Eigen::AutoAlign>
result_view(result.data(), nrows, ncols);
result_view += arg.data();
return result;
}
#define MULT_DENSE_SPARSE_TO_SPARSE 0
#if MULT_DENSE_SPARSE_TO_SPARSE
// Multiplication operations (Hadamard product)
// sparse_result[perm ^ i] = dense_arg1[i] * sparse_arg2[i]
template <typename T, typename TagType>
EigenSparseTile<T, TagType> mult(const TiledArray::Tensor<T>& arg1,
const EigenSparseTile<T, TagType>& arg2,
const Permutation& perm) {
TA_ASSERT(arg1.range() == arg2.range());
TA_ASSERT(perm.dim() == 2);
const auto identity_perm = (perm[0] == 0);
typedef typename EigenSparseTile<T, TagType>::matrix_type matrix_type;
typedef typename matrix_type::Index idx_t;
auto arg2_mat = arg2.data();
auto lobound = arg2.range().lobound_data();
std::vector<Eigen::Triplet<T>> datavec;
// drive Hadamard by the sparse matrix
for (idx_t k = 0; k < arg2_mat.outerSize(); ++k)
for (typename matrix_type::InnerIterator it(arg2_mat, k); it; ++it) {
auto row = it.row();
auto col = it.col();
datavec.push_back(Eigen::Triplet<T>(
row, col, it.value() * arg1(row + lobound[0], col + lobound[1])));
}
matrix_type result(arg2_mat.rows(), arg2_mat.cols());
result.setFromTriplets(datavec.begin(), datavec.end());
if (not identity_perm) result = result.transpose();
return EigenSparseTile<T, TagType>(result, arg2.range());
}
// sparse_result[i] = dense_arg1[i] * sparse_arg2[i]
template <typename T, typename TagType>
EigenSparseTile<T, TagType> mult(const TiledArray::Tensor<T>& arg1,
const EigenSparseTile<T, TagType>& arg2) {
auto iperm = Permutation::identity(2);
return mult(arg1, arg2, iperm);
}
// sparse_result[i] *= dense_arg1[i]
template <typename T, typename TagType>
EigenSparseTile<T, TagType>& mult_to(EigenSparseTile<T, TagType>& result,
const TiledArray::Tensor<T>& arg1) {
TA_ASSERT(result.range() == arg1.range());
typedef typename EigenSparseTile<T, TagType>::matrix_type matrix_type;
auto mat = result.data();
auto lobound = result.range().lobound_data();
typedef typename matrix_type::Index idx_t;
// drive Hadamard by the sparse matrix
for (idx_t k = 0; k < mat.outerSize(); ++k)
for (typename matrix_type::InnerIterator it(mat, k); it; ++it) {
auto row = it.row();
auto col = it.col();
it.valueRef() *= arg1(row + lobound[0], col + lobound[1]);
}
return result;
}
// Contraction operation
// GEMM operation with fused indices as defined by gemm_config:
// sparse_result[i,j] = dense_arg1[i,k] * sparse_arg2[k,j]
template <typename T, typename TagType>
EigenSparseTile<T, TagType> gemm(
const TiledArray::Tensor<T>& arg1, const EigenSparseTile<T, TagType>& arg2,
const typename std::common_type<
typename TiledArray::Tensor<T>::numeric_type,
typename EigenSparseTile<T, TagType>::numeric_type>::type factor,
const TiledArray::math::GemmHelper& gemm_config) {
abort();
return EigenSparseTile<T, TagType>();
}
// GEMM operation with fused indices as defined by gemm_config:
// sparse_result[i,j] = dense_arg1[i,k] * sparse_arg2[k,j]
template <typename T, typename TagType>
void gemm(EigenSparseTile<T, TagType>& result,
const TiledArray::Tensor<T>& arg1,
const EigenSparseTile<T, TagType>& arg2,
const typename std::common_type<
typename TiledArray::Tensor<T>::numeric_type,
typename EigenSparseTile<T, TagType>::numeric_type>::type factor,
const TiledArray::math::GemmHelper& gemm_config) {
abort();
}
#else // not MULT_DENSE_SPARSE_TO_SPARSE
// Multiplication operations (Hadamard product)
// dense_result[perm ^ i] = dense_arg1[i] * sparse_arg2[i]
template <typename T, typename TagType>
TiledArray::Tensor<T> mult(const TiledArray::Tensor<T>& arg1,
const EigenSparseTile<T, TagType>& arg2,
const Permutation& perm) {
TA_ASSERT(arg1.range() == arg2.range());
TA_ASSERT(perm.dim() == 2);
const auto identity_perm = (perm[0] == 0);
typedef typename EigenSparseTile<T, TagType>::matrix_type matrix_type;
typedef typename matrix_type::Index idx_t;
auto arg2_mat = arg2.data();
auto lobound = arg2.range().lobound_data();
TiledArray::Tensor<T> result(perm * arg1.range(), 0);
// drive Hadamard by the sparse matrix
for (idx_t k = 0; k < arg2_mat.outerSize(); ++k)
for (typename matrix_type::InnerIterator it(arg2_mat, k); it; ++it) {
auto row = it.row();
auto col = it.col();
auto drow = row + lobound[0];
auto dcol = col + lobound[1];
if (identity_perm)
result(drow, dcol) = arg1(drow, dcol) * it.value();
else
result(dcol, drow) = arg1(drow, dcol) * it.value();
}
return result;
}
// dense_result[i] = dense_arg1[i] * sparse_arg2[i]
template <typename T, typename TagType>
TiledArray::Tensor<T> mult(const TiledArray::Tensor<T>& arg1,
const EigenSparseTile<T, TagType>& arg2) {
auto iperm = Permutation::identity(2);
return mult(arg1, arg2, iperm);
}
// dense_result[i] *= sparse_arg1[i]
template <typename T, typename TagType>
TiledArray::Tensor<T>& mult_to(TiledArray::Tensor<T>& result,
const EigenSparseTile<T, TagType>& arg1) {
TA_ASSERT(result.range() == arg1.range());
typedef typename EigenSparseTile<T, TagType>::matrix_type matrix_type;
auto mat = arg1.data();
auto lobound = arg1.range().lobound_data();
typedef typename matrix_type::Index idx_t;
// drive Hadamard by the sparse matrix
for (idx_t k = 0; k < mat.outerSize(); ++k)
for (typename matrix_type::InnerIterator it(mat, k); it; ++it) {
auto row = it.row();
auto col = it.col();
result(row + lobound[0], col + lobound[1]) *= it.value();
}
return result;
}
// Contraction operation
// GEMM operation with fused indices as defined by gemm_config:
// dense_result[i,j] = dense_arg1[i,k] * sparse_arg2[k,j]
template <typename T, typename TagType>
TiledArray::Tensor<T> gemm(
const TiledArray::Tensor<T>& arg1, const EigenSparseTile<T, TagType>& arg2,
const typename std::common_type<
typename TiledArray::Tensor<T>::numeric_type,
typename EigenSparseTile<T, TagType>::numeric_type>::type factor,
const TiledArray::math::GemmHelper& gemm_config) {
// only simple outer product implemented at the moment
TA_ASSERT(gemm_config.result_rank() ==
gemm_config.left_rank() + gemm_config.right_rank());
TA_ASSERT(gemm_config.left_rank() == arg1.range().rank());
TA_ASSERT(gemm_config.right_rank() == arg2.range().rank());
auto result_range = gemm_config.make_result_range<TiledArray::Range>(
arg1.range(), arg2.range());
TiledArray::Tensor<T> result(result_range, 0);
auto arg1_lobound = arg1.range().lobound_data();
auto arg1_upbound = arg1.range().upbound_data();
typedef typename EigenSparseTile<T, TagType>::matrix_type matrix_type;
typedef typename matrix_type::Index idx_t;
auto arg2_mat = arg2.data();
auto arg2_lobound = arg2.range().lobound_data();
// drive outer product by the sparse matrix
for (idx_t k = 0; k < arg2_mat.outerSize(); ++k)
for (typename matrix_type::InnerIterator it(arg2_mat, k); it; ++it) {
auto row = it.row();
auto col = it.col();
auto value = it.value();
auto drow = row + arg2_lobound[0];
auto dcol = col + arg2_lobound[1];
// make a slice of the result ...
// TODO can this be done via outer product of TensorInterfaces?
// auto result_slice = result.block(
// {arg1_lobound[0],arg1_lobound[1],drow,dcol},
// {arg1_upbound[0],arg1_upbound[1],drow+1,dcol+1}
// );
// and evaluate the result slice
for (auto i0 = arg1_lobound[0]; i0 != arg1_upbound[0]; ++i0) {
for (auto i1 = arg1_lobound[1]; i1 != arg1_upbound[1]; ++i1) {
result(i0, i1, drow, dcol) = arg1(i0, i1) * value;
}
}
}
return result;
}
// GEMM operation with fused indices as defined by gemm_config:
// dense_result[i,j] = dense_arg1[i,k] * sparse_arg2[k,j]
template <typename T, typename TagType>
void gemm(TiledArray::Tensor<T>& result, const TiledArray::Tensor<T>& arg1,
const EigenSparseTile<T, TagType>& arg2,
const typename std::common_type<
typename TiledArray::Tensor<T>::numeric_type,
typename EigenSparseTile<T, TagType>::numeric_type>::type factor,
const TiledArray::math::GemmHelper& gemm_config) {
abort();
}
#endif
// Reduction operations
// Sum of hyper diagonal elements
template <typename T, typename TagType>
typename EigenSparseTile<T, TagType>::numeric_type trace(
const EigenSparseTile<T, TagType>& arg);
// foreach(i) result += arg[i]
template <typename T, typename TagType>
typename EigenSparseTile<T, TagType>::numeric_type sum(
const EigenSparseTile<T, TagType>& arg);
// foreach(i) result *= arg[i]
template <typename T, typename TagType>
typename EigenSparseTile<T, TagType>::numeric_type product(
const EigenSparseTile<T, TagType>& arg);
// foreach(i) result += arg[i] * arg[i]
template <typename T, typename TagType>
typename EigenSparseTile<T, TagType>::numeric_type squared_norm(
const EigenSparseTile<T, TagType>& arg);
// sqrt(squared_norm(arg))
template <typename T, typename TagType>
typename EigenSparseTile<T, TagType>::numeric_type norm(
const EigenSparseTile<T, TagType>& arg);
// foreach(i) result = max(result, arg[i])
template <typename T, typename TagType>
typename EigenSparseTile<T, TagType>::numeric_type max(
const EigenSparseTile<T, TagType>& arg);
// foreach(i) result = min(result, arg[i])
template <typename T, typename TagType>
typename EigenSparseTile<T, TagType>::numeric_type min(
const EigenSparseTile<T, TagType>& arg);
// foreach(i) result = max(result, abs(arg[i]))
template <typename T, typename TagType>
typename EigenSparseTile<T, TagType>::numeric_type abs_max(
const EigenSparseTile<T, TagType>& arg);
// foreach(i) result = max(result, abs(arg[i]))
template <typename T, typename TagType>
typename EigenSparseTile<T, TagType>::numeric_type abs_min(
const EigenSparseTile<T, TagType>& arg);
namespace TiledArray {
// convert TiledArray::Tensor<T> to EigenSparseTile<T>
template <typename T, typename TagType>
class Cast<EigenSparseTile<T, TagType>, TiledArray::Tensor<T>> {
public:
typedef EigenSparseTile<T, TagType> result_type;
typedef TiledArray::Tensor<T> tile_type;
result_type operator()(const tile_type& arg) const {
typedef Eigen::Triplet<T> Triplet;
std::vector<Triplet> tripletList;
tripletList.reserve(arg.size());
auto extent = arg.range().extent_data();
auto lobound = arg.range().lobound_data();
auto nrows = extent[0];
auto ncols = extent[1];
for (decltype(nrows) r = 0; r != nrows; ++r) {
for (decltype(ncols) c = 0; c != ncols; ++c) {
auto v_rc = arg(r + lobound[0], c + lobound[1]);
if (v_rc != 0) tripletList.push_back(Triplet(r, c, v_rc));
}
}
typename EigenSparseTile<T, TagType>::matrix_type result(nrows, ncols);
result.setFromTriplets(tripletList.begin(), tripletList.end());
return EigenSparseTile<T, TagType>(std::move(result), arg.range());
}
};
} // namespace TiledArray
namespace madness {
namespace archive {
template <class Archive, typename T>
struct ArchiveLoadImpl<Archive, Eigen::Triplet<T>> {
static inline void load(const Archive& ar, Eigen::Triplet<T>& obj) {
int row, col;
T value;
ar& row& col& value;
obj = Eigen::Triplet<T>(row, col, value);
}
};
template <class Archive, typename T>
struct ArchiveStoreImpl<Archive, Eigen::Triplet<T>> {
static inline void store(const Archive& ar, const Eigen::Triplet<T>& obj) {
ar& obj.row() & obj.col() & obj.value();
}
};
} // namespace archive
} // namespace madness
#endif // TILEDARRAY_TEST_SPARSE_TILE_H__INCLUDED
|