File: symm_permutation_group.cpp

package info (click to toggle)
tiledarray 1.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 9,568 kB
  • sloc: cpp: 53,449; javascript: 1,599; sh: 393; ansic: 226; python: 223; xml: 195; makefile: 36
file content (365 lines) | stat: -rw-r--r-- 11,798 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
/*
 *  This file is a part of TiledArray.
 *  Copyright (C) 2015  Virginia Tech
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  Edward Valeev, Justus Calvin
 *  Department of Chemistry, Virginia Tech
 *
 *  symm_permutation_group.cpp
 *  May 14, 2015
 *
 */

#include <chrono>
#include <iostream>
#include <random>

#include "TiledArray/symm/permutation_group.h"
#include "unit_test_config.h"

using TiledArray::symmetry::Permutation;
using TiledArray::symmetry::PermutationGroup;
using TiledArray::symmetry::SymmetricGroup;

struct PermutationGroupFixture {
  PermutationGroupFixture()
      : generator(std::chrono::system_clock::now().time_since_epoch().count()),
        uniform_int_distribution(0, 100) {
    {  // construct set of generators for P4__01__23__02_13 =
       // P4{(0,1),(2,3),(0,2)(1,3)}
      // this group describes symmetries under permutations 0<->1, 2<->3, and
      // {0,1}<->{2,3}
      P4__01__23__02_13_generators.reserve(3);
      P4__01__23__02_13_generators.emplace_back(Permutation{1, 0, 2, 3});
      P4__01__23__02_13_generators.emplace_back(Permutation{0, 1, 3, 2});
      P4__01__23__02_13_generators.emplace_back(Permutation{2, 3, 0, 1});
    }
  }

  ~PermutationGroupFixture() {}

  template <size_t N>
  std::array<int, N> random_index() {
    std::array<int, N> result;
    for (auto& value : result) value = uniform_int_distribution(generator);
    return result;
  }

  // random number generation
  std::default_random_engine generator;
  std::uniform_int_distribution<int> uniform_int_distribution;

  // for testing symmetric group
  static const unsigned int max_degree = 4u;

  std::vector<Permutation> P4__01__23__02_13_generators;

  void validate_group(const PermutationGroup& S) {
    // Check that the group includes the identity element
    BOOST_CHECK_EQUAL(S.identity(), Permutation());
    for (unsigned int i = 0u; i < S.order(); ++i) {
      BOOST_CHECK_EQUAL(S.identity() * S[i], S[i]);
      BOOST_CHECK_EQUAL(S[i] * S.identity(), S[i]);
    }

    // Check that the group forms a closed set
    for (unsigned int i = 0u; i < S.order(); ++i) {
      for (unsigned int j = 0u; j < S.order(); ++j) {
        Permutation e = S[i] * S[j];

        unsigned int k = 0u;
        for (; k < S.order(); ++k) {
          if (e == S[k]) break;
        }

        // Check that e is a member of the group
        BOOST_CHECK(k < S.order());
      }
    }

    // Check that the elements of the set are associative
    for (unsigned int i = 0u; i < S.order(); ++i) {
      for (unsigned int j = 0u; j < S.order(); ++j) {
        for (unsigned int k = 0u; k < S.order(); ++k) {
          BOOST_CHECK_EQUAL((S[i] * S[j]) * S[k], S[i] * (S[j] * S[k]));
        }
      }
    }

    // Check that the group contains the inverse of each element
    for (unsigned int i = 0u; i < S.order(); ++i) {
      Permutation inv = S[i].inv();

      // Search for the inverse of S[i]
      unsigned int j = 0u;
      for (; j < S.order(); ++j)
        if (inv == S[j]) break;

      // Check that inv is a member of the group
      BOOST_CHECK(j < S.order());

      // Check that the any element multiplied by its own inverse is the
      // identity
      BOOST_CHECK_EQUAL(inv * S[i], S.identity());
      BOOST_CHECK_EQUAL(S[i] * inv, S.identity());
    }
  }

};  // PermutationGroupFixture

BOOST_FIXTURE_TEST_SUITE(symm_group_suite, PermutationGroupFixture)

BOOST_AUTO_TEST_CASE(constructor) {
  // SymmetricGroup "degree" ctor
  {
    unsigned int order = 1u;
    for (unsigned int degree = 1u; degree <= max_degree;
         ++degree, order *= degree) {
      BOOST_REQUIRE_NO_THROW(SymmetricGroup S(degree));
      SymmetricGroup S(degree);

      // Check that the group has the correct degree
      BOOST_CHECK_EQUAL(S.degree(), degree);

      // Check that the number of elements in the group is correct
      BOOST_CHECK_EQUAL(S.order(), order);

      validate_group(S);
    }
  }

  // SymmetricGroup "domain" ctor
  {
    auto domain = {0, 7, 11, 15};
    BOOST_REQUIRE_NO_THROW(SymmetricGroup S(domain));
    SymmetricGroup S(domain.begin(), domain.end());

    // Check that the group has the correct degree
    BOOST_CHECK_EQUAL(S.degree(), 4);

    // Check that the number of elements in the group is correct
    BOOST_CHECK_EQUAL(S.order(), 4 * 3 * 2 * 1);

    validate_group(S);
  }

  // PermutationGroup ctor
  {
    PermutationGroup P4__01__23__02_13(P4__01__23__02_13_generators);

    // Check that the number of elements in the group is correct
    BOOST_CHECK_EQUAL(P4__01__23__02_13.order(), 8u);

    validate_group(P4__01__23__02_13);
  }
}

BOOST_AUTO_TEST_CASE(equality) {
  {  // make S1 in 2 different ways (this also checks that trivial generators
     // are skipped)
    SymmetricGroup S1(1);
    auto I = Permutation{0, 1};
    PermutationGroup P(std::vector<Permutation>{I});
    BOOST_CHECK(S1 == P);
  }
  {  // make S2 in 2 different ways
    SymmetricGroup S2(2);
    auto p10 = Permutation{1, 0};
    PermutationGroup P(std::vector<Permutation>{p10});
    BOOST_CHECK(S2 == P);
  }
  {  // make S3 in 3 different ways
    SymmetricGroup S3(3);
    PermutationGroup P1(
        std::vector<Permutation>{Permutation{1, 0}, Permutation{2, 1, 0}});
    PermutationGroup P2(
        std::vector<Permutation>{Permutation{1, 2, 0}, Permutation{0, 2, 1}});
    BOOST_CHECK(S3 == P1);
    BOOST_CHECK(S3 == P2);
    BOOST_CHECK(P1 == P2);
  }
}

BOOST_AUTO_TEST_CASE(comparison) {
  {
    SymmetricGroup S2(2);
    PermutationGroup P1(std::vector<Permutation>{
        Permutation{1, 2, 0}});  // cyclic subgroup of S3
    SymmetricGroup S3(3);
    BOOST_CHECK(S2 < S3);
    BOOST_CHECK(S3 < P1);
  }
}

BOOST_AUTO_TEST_CASE(domain) {
  {  // symmetric group on a "sparse" index domain
    auto domain = {0, 7, 11, 15};
    SymmetricGroup S(domain);

    auto computed_domain = S.domain<std::set<unsigned int>>();
    BOOST_CHECK(computed_domain.size() == domain.size());
    for (auto e : computed_domain) {
      BOOST_CHECK(std::find(domain.begin(), domain.end(), e) != domain.end());
    }
  }
  {  // permutation group on a sparse domain
    std::vector<Permutation> gens;
    gens.emplace_back(Permutation{0, 1, 2, 4, 5, 3});
    gens.emplace_back(Permutation{0, 1, 3, 2});
    auto ref_domain = {2, 3, 4,
                       5};  // this is the domain of the above 2 permutations

    PermutationGroup P(gens);

    auto computed_domain = P.domain<std::set<unsigned int>>();
    BOOST_CHECK(computed_domain.size() == ref_domain.size());
    for (auto e : computed_domain) {
      BOOST_CHECK(std::find(ref_domain.begin(), ref_domain.end(), e) !=
                  ref_domain.end());
    }
  }
}

BOOST_AUTO_TEST_CASE(conjugation) {
  {  // symmetric group is invariant under any permutation in it
    auto domain = {0, 2, 3, 5};
    SymmetricGroup S(domain);
    Permutation p({2, 1, 5, 0, 4, 3, 6, 7});
    BOOST_CHECK(conjugate(S, p) == S);
  }
  {  // shift symmetric group to a different domain
    auto domain = {0, 2, 3, 5};
    SymmetricGroup S(domain);
    // shift the domain to {1,2,4,7}
    Permutation p({1, 0, 2, 4, 3, 7, 6, 5});
    auto new_domain = {1, 2, 4, 7};
    SymmetricGroup S_shifted_ref(new_domain);

    auto S_shifted = conjugate(S, p);
    BOOST_CHECK(S_shifted == S_shifted_ref);
  }
  {  // another example
    PermutationGroup P4__01__23__02_13(P4__01__23__02_13_generators);
    // {0,1,2,3} -> {0,2,1,3}
    Permutation p({0, 2, 1, 3});
    auto P4__02__13__01_23 = conjugate(P4__01__23__02_13, p);
    BOOST_CHECK(P4__01__23__02_13 != P4__02__13__01_23);
  }
}

BOOST_AUTO_TEST_CASE(intersection) {
  {  // S2 is a subgroup of S3
    SymmetricGroup S2(2);
    SymmetricGroup S3(3);
    BOOST_CHECK(intersect(S2, S3) == S2);
    {  // another S2 is a subgroup of S3
      SymmetricGroup S2({0, 2});
      BOOST_CHECK(intersect(S2, S3) == S2);
    }
    {  // yet another S2 is a subgroup of S3
      SymmetricGroup S2{1, 2};
      BOOST_CHECK(intersect(S2, S3) == S2);
    }
  }
}

BOOST_AUTO_TEST_CASE(set_stabilizer) {
  {  // S2{0,1} is a subgroup of S3{0,1,2} that fixes {2}
    SymmetricGroup S2(2);
    SymmetricGroup S3(3);
    BOOST_CHECK(stabilizer(S3, std::vector<int>{2}) == S2);
    {  // and another S2
      SymmetricGroup S2({0, 2});
      BOOST_CHECK(stabilizer(S3, std::vector<int>{1}) == S2);
    }
    {  // and another S2
      SymmetricGroup S2({1, 2});
      BOOST_CHECK(stabilizer(S3, std::vector<int>{0}) == S2);
    }

    // S1{0} is a subgroup of S3{0,1,2} that fixes {1,2}
    SymmetricGroup S1(1);
    BOOST_CHECK(stabilizer(S3, std::vector<int>{1, 2}) == S1);
    {  // and another S1
      SymmetricGroup S1({1});
      BOOST_CHECK(stabilizer(S3, std::vector<int>{0, 2}) == S1);
    }
    {  // and another S1
      SymmetricGroup S2({2});
      BOOST_CHECK(stabilizer(S3, std::vector<int>{0, 1}) == S1);
    }
  }
}

BOOST_AUTO_TEST_CASE(lexicographical_order) {
  {  // check S5
    typedef std::array<int, 5> index_type;
    SymmetricGroup S5(5);

    BOOST_CHECK_EQUAL(
        is_lexicographically_smallest(index_type{{1, 2, 3, 4, 5}}, S5), true);
    BOOST_CHECK_EQUAL(
        is_lexicographically_smallest(index_type{{1, 1, 300, 300, 500}}, S5),
        true);
    BOOST_CHECK_EQUAL(
        is_lexicographically_smallest(index_type{{300, 300, 300, 300, 5}}, S5),
        false);
    BOOST_CHECK_EQUAL(
        is_lexicographically_smallest(index_type{{1, 1, 0, 0, 5}}, S5), false);
    BOOST_CHECK_EQUAL(
        is_lexicographically_smallest(index_type{{1, 2, 3, 4, 0}}, S5), false);
  }

  {  // check P5{(0,2,4)(1,3)}
    typedef std::array<int, 5> index_type;
    PermutationGroup P(std::vector<Permutation>{Permutation{4, 3, 0, 1, 2}});

    BOOST_CHECK_EQUAL(
        is_lexicographically_smallest(index_type{{1, 2, 3, 4, 5}}, P), true);
    BOOST_CHECK_EQUAL(
        is_lexicographically_smallest(index_type{{1, 3, 1, 4, 1}}, P), true);
    BOOST_CHECK_EQUAL(
        is_lexicographically_smallest(index_type{{1, 2, 1, 1, 1}}, P), false);
    BOOST_CHECK_EQUAL(
        is_lexicographically_smallest(index_type{{1, 1, 2, 0, 3}}, P), false);
    BOOST_CHECK_EQUAL(
        is_lexicographically_smallest(index_type{{1, 2, 2, 3, 1}}, P), false);
  }

  {  // check P4{(0,1),(2,3),(0,2)(1,3)}
    typedef std::array<int, 4> index_type;
    PermutationGroup P(P4__01__23__02_13_generators);

    BOOST_CHECK_EQUAL(
        is_lexicographically_smallest(index_type{{1, 2, 3, 4}}, P), true);
    BOOST_CHECK_EQUAL(
        is_lexicographically_smallest(index_type{{1, 3, 2, 4}}, P), true);
    BOOST_CHECK_EQUAL(
        is_lexicographically_smallest(index_type{{1, 2, 2, 4}}, P), true);
    BOOST_CHECK_EQUAL(
        is_lexicographically_smallest(index_type{{2, 3, 2, 3}}, P), true);
    BOOST_CHECK_EQUAL(
        is_lexicographically_smallest(index_type{{1, 2, 3, 2}}, P), false);
    BOOST_CHECK_EQUAL(
        is_lexicographically_smallest(index_type{{2, 1, 3, 4}}, P), false);
    BOOST_CHECK_EQUAL(
        is_lexicographically_smallest(index_type{{1, 3, 1, 2}}, P), false);
    BOOST_CHECK_EQUAL(
        is_lexicographically_smallest(index_type{{2, 3, 1, 4}}, P), false);
  }
}

BOOST_AUTO_TEST_SUITE_END()