1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
/*
* This file is a part of TiledArray.
* Copyright (C) 2015 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Edward Valeev
* Department of Chemistry, Virginia Tech
*
* symm_repreentation.cpp
* September 12, 2015
*
*/
#include <chrono>
#include <iostream>
#include <random>
#include "TiledArray/symm/permutation_group.h"
#include "TiledArray/symm/representation.h"
#include "unit_test_config.h"
using TiledArray::symmetry::Permutation;
using TiledArray::symmetry::PermutationGroup;
using TiledArray::symmetry::Representation;
using TiledArray::symmetry::SymmetricGroup;
struct GroupRepresentationFixture {
GroupRepresentationFixture()
: generator(std::chrono::system_clock::now().time_since_epoch().count()),
uniform_int_distribution(0, 100) {}
~GroupRepresentationFixture() {}
template <size_t N>
std::array<int, N> random_index() {
std::array<int, N> result;
for (auto& value : result) value = uniform_int_distribution(generator);
return result;
}
// random number generation
std::default_random_engine generator;
std::uniform_int_distribution<int> uniform_int_distribution;
}; // GroupRepresentationFixture
struct U1_Operator {
enum operator_type {
_i = 0,
_n = 1,
_cc = 2,
_n_cc = 3
}; // bitwise encoding; multiplication = XOR
public:
U1_Operator(operator_type t = _i) : type_(t) {}
U1_Operator(const U1_Operator&) = default;
static U1_Operator identity;
static U1_Operator negate;
static U1_Operator complex_conjugate;
static U1_Operator negate_complex_conjugate;
// computes *this * rhs
U1_Operator operator*(const U1_Operator& rhs) const {
return U1_Operator(static_cast<operator_type>(type_ ^ rhs.type_));
}
// compares *this and rhs
bool operator==(const U1_Operator& rhs) const { return type_ == rhs.type_; }
private:
operator_type type_;
};
U1_Operator U1_Operator::identity = U1_Operator{_i};
U1_Operator U1_Operator::negate = U1_Operator{_n};
U1_Operator U1_Operator::complex_conjugate = U1_Operator{_cc};
U1_Operator U1_Operator::negate_complex_conjugate = U1_Operator{_n_cc};
namespace TiledArray {
namespace symmetry {
template <>
U1_Operator identity<U1_Operator>() {
return U1_Operator::identity;
}
} // namespace symmetry
} // namespace TiledArray
BOOST_FIXTURE_TEST_SUITE(symm_representation_suite, GroupRepresentationFixture)
BOOST_AUTO_TEST_CASE(constructor) {
// representation for permutation symmetry
// <01||23> = -<10||23> = -<01||32> = <10||32> = <23||01>* = -<23||10>* =
// -<32||01>* = <32||10>*
{
// generators are permutations (in cycle notation): (0,1), (2,3), and
// (0,2)(1,3) the corresponding operators are negate, negate, and
// compl_conjugate
std::map<Permutation, U1_Operator> genops;
genops[Permutation{1, 0, 2, 3}] = U1_Operator::negate;
genops[Permutation{0, 1, 3, 2}] = U1_Operator::negate;
genops[Permutation{2, 3, 0, 1}] = U1_Operator::complex_conjugate;
Representation<PermutationGroup, U1_Operator> rep(genops);
BOOST_CHECK_EQUAL(rep.order(), 8u);
for (const auto& g_op_pair : rep.representatives()) {
auto g = g_op_pair.first;
auto op = g_op_pair.second;
if (g == Permutation{0, 1, 2, 3})
BOOST_CHECK(op == U1_Operator::identity);
if (g == Permutation{1, 0, 2, 3}) BOOST_CHECK(op == U1_Operator::negate);
if (g == Permutation{0, 1, 3, 2}) BOOST_CHECK(op == U1_Operator::negate);
if (g == Permutation{1, 0, 3, 2})
BOOST_CHECK(op == U1_Operator::identity);
if (g == Permutation{2, 3, 0, 1})
BOOST_CHECK(op == U1_Operator::complex_conjugate);
if (g == Permutation{2, 3, 1, 0})
BOOST_CHECK(op == U1_Operator::negate_complex_conjugate);
if (g == Permutation{3, 2, 0, 1})
BOOST_CHECK(op == U1_Operator::negate_complex_conjugate);
if (g == Permutation{3, 2, 1, 0})
BOOST_CHECK(op == U1_Operator::complex_conjugate);
}
}
}
BOOST_AUTO_TEST_SUITE_END()
|