File: symm_representation.cpp

package info (click to toggle)
tiledarray 1.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 9,568 kB
  • sloc: cpp: 53,449; javascript: 1,599; sh: 393; ansic: 226; python: 223; xml: 195; makefile: 36
file content (141 lines) | stat: -rw-r--r-- 4,620 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
/*
 *  This file is a part of TiledArray.
 *  Copyright (C) 2015  Virginia Tech
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  Edward Valeev
 *  Department of Chemistry, Virginia Tech
 *
 *  symm_repreentation.cpp
 *  September 12, 2015
 *
 */

#include <chrono>
#include <iostream>
#include <random>

#include "TiledArray/symm/permutation_group.h"
#include "TiledArray/symm/representation.h"
#include "unit_test_config.h"

using TiledArray::symmetry::Permutation;
using TiledArray::symmetry::PermutationGroup;
using TiledArray::symmetry::Representation;
using TiledArray::symmetry::SymmetricGroup;

struct GroupRepresentationFixture {
  GroupRepresentationFixture()
      : generator(std::chrono::system_clock::now().time_since_epoch().count()),
        uniform_int_distribution(0, 100) {}

  ~GroupRepresentationFixture() {}

  template <size_t N>
  std::array<int, N> random_index() {
    std::array<int, N> result;
    for (auto& value : result) value = uniform_int_distribution(generator);
    return result;
  }

  // random number generation
  std::default_random_engine generator;
  std::uniform_int_distribution<int> uniform_int_distribution;

};  // GroupRepresentationFixture

struct U1_Operator {
  enum operator_type {
    _i = 0,
    _n = 1,
    _cc = 2,
    _n_cc = 3
  };  // bitwise encoding; multiplication = XOR
 public:
  U1_Operator(operator_type t = _i) : type_(t) {}
  U1_Operator(const U1_Operator&) = default;

  static U1_Operator identity;
  static U1_Operator negate;
  static U1_Operator complex_conjugate;
  static U1_Operator negate_complex_conjugate;

  // computes *this * rhs
  U1_Operator operator*(const U1_Operator& rhs) const {
    return U1_Operator(static_cast<operator_type>(type_ ^ rhs.type_));
  }
  // compares *this and rhs
  bool operator==(const U1_Operator& rhs) const { return type_ == rhs.type_; }

 private:
  operator_type type_;
};

U1_Operator U1_Operator::identity = U1_Operator{_i};
U1_Operator U1_Operator::negate = U1_Operator{_n};
U1_Operator U1_Operator::complex_conjugate = U1_Operator{_cc};
U1_Operator U1_Operator::negate_complex_conjugate = U1_Operator{_n_cc};

namespace TiledArray {
namespace symmetry {
template <>
U1_Operator identity<U1_Operator>() {
  return U1_Operator::identity;
}
}  // namespace symmetry
}  // namespace TiledArray

BOOST_FIXTURE_TEST_SUITE(symm_representation_suite, GroupRepresentationFixture)

BOOST_AUTO_TEST_CASE(constructor) {
  // representation for permutation symmetry
  // <01||23> = -<10||23> = -<01||32> = <10||32> = <23||01>* = -<23||10>* =
  // -<32||01>* = <32||10>*
  {
    // generators are permutations (in cycle notation): (0,1), (2,3), and
    // (0,2)(1,3) the corresponding operators are negate, negate, and
    // compl_conjugate
    std::map<Permutation, U1_Operator> genops;
    genops[Permutation{1, 0, 2, 3}] = U1_Operator::negate;
    genops[Permutation{0, 1, 3, 2}] = U1_Operator::negate;
    genops[Permutation{2, 3, 0, 1}] = U1_Operator::complex_conjugate;

    Representation<PermutationGroup, U1_Operator> rep(genops);

    BOOST_CHECK_EQUAL(rep.order(), 8u);

    for (const auto& g_op_pair : rep.representatives()) {
      auto g = g_op_pair.first;
      auto op = g_op_pair.second;

      if (g == Permutation{0, 1, 2, 3})
        BOOST_CHECK(op == U1_Operator::identity);
      if (g == Permutation{1, 0, 2, 3}) BOOST_CHECK(op == U1_Operator::negate);
      if (g == Permutation{0, 1, 3, 2}) BOOST_CHECK(op == U1_Operator::negate);
      if (g == Permutation{1, 0, 3, 2})
        BOOST_CHECK(op == U1_Operator::identity);
      if (g == Permutation{2, 3, 0, 1})
        BOOST_CHECK(op == U1_Operator::complex_conjugate);
      if (g == Permutation{2, 3, 1, 0})
        BOOST_CHECK(op == U1_Operator::negate_complex_conjugate);
      if (g == Permutation{3, 2, 0, 1})
        BOOST_CHECK(op == U1_Operator::negate_complex_conjugate);
      if (g == Permutation{3, 2, 1, 0})
        BOOST_CHECK(op == U1_Operator::complex_conjugate);
    }
  }
}

BOOST_AUTO_TEST_SUITE_END()