1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
/*
* This file is a part of TiledArray.
* Copyright (C) 2013 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "TiledArray/tensor_impl.h"
#include "sparse_shape_fixture.h"
#include "tiledarray.h"
#include "unit_test_config.h"
using namespace TiledArray;
struct TensorImplBaseFixture : public SparseShapeFixture {
typedef detail::TensorImpl<DensePolicy> tensor_impl_base;
TensorImplBaseFixture()
: pmap(new detail::HashPmap(*GlobalFixture::world,
tr.tiles_range().volume())) {}
std::shared_ptr<tensor_impl_base::pmap_interface> pmap;
}; // struct TensorImplBaseFixture
struct TensorImplFixture : public TensorImplBaseFixture {
typedef TiledRange trange_type;
typedef Tensor<int> value_type;
typedef detail::TensorImpl<DensePolicy> tensor_impl_base;
typedef detail::TensorImpl<SparsePolicy> sp_tensor_impl_base;
typedef tensor_impl_base::shape_type dense_shape_type;
typedef sp_tensor_impl_base::shape_type sparse_shape_type;
TensorImplFixture()
: impl(*GlobalFixture::world, tr, dense_shape_type(), pmap),
sp_impl(*GlobalFixture::world, tr, make_shape(tr, 0.5, 42), pmap) {}
~TensorImplFixture() { GlobalFixture::world->gop.fence(); }
tensor_impl_base impl;
sp_tensor_impl_base sp_impl;
}; // struct TensorImplFixture
BOOST_FIXTURE_TEST_SUITE(tensor_impl_suite, TensorImplFixture)
BOOST_AUTO_TEST_CASE(constructor_dense_policy) {
BOOST_REQUIRE_NO_THROW(
tensor_impl_base(*GlobalFixture::world, tr, dense_shape_type(), pmap));
tensor_impl_base x(*GlobalFixture::world, tr, dense_shape_type(), pmap);
// Check that the initial conditions are correct after construction.
BOOST_CHECK_EQUAL(&x.world(), GlobalFixture::world);
BOOST_CHECK(x.pmap() == pmap);
BOOST_CHECK_EQUAL(x.tiles_range(), tr.tiles_range());
BOOST_CHECK_EQUAL(x.trange(), tr);
BOOST_CHECK_EQUAL(x.size(), tr.tiles_range().volume());
BOOST_CHECK(x.is_dense());
for (std::size_t i = 0; i < tr.tiles_range().volume(); ++i)
BOOST_CHECK(!x.is_zero(i));
}
BOOST_AUTO_TEST_CASE(constructor_shape_policy) {
BOOST_REQUIRE_NO_THROW(sp_tensor_impl_base(*GlobalFixture::world, tr,
make_shape(tr, 0.5, 23), pmap));
sp_tensor_impl_base x(*GlobalFixture::world, tr, make_shape(tr, 0.5, 23),
pmap);
// Check that the initial conditions are correct after construction.
BOOST_CHECK_EQUAL(&x.world(), GlobalFixture::world);
BOOST_CHECK(x.pmap() == pmap);
BOOST_CHECK_EQUAL(x.tiles_range(), tr.tiles_range());
BOOST_CHECK_EQUAL(x.trange(), tr);
BOOST_CHECK_EQUAL(x.size(), tr.tiles_range().volume());
BOOST_CHECK(!x.is_dense());
for (std::size_t i = 0; i < tr.tiles_range().volume(); ++i) {
if (x.shape()[i] < SparseShape<float>::threshold()) {
BOOST_CHECK(x.is_zero(i));
} else {
BOOST_CHECK(!x.is_zero(i));
}
}
}
BOOST_AUTO_TEST_CASE(process_map) {
BOOST_CHECK(impl.pmap() == pmap);
// Check that the impl ownership and locality are correct
for (std::size_t i = 0; i < tr.tiles_range().volume(); ++i) {
BOOST_CHECK_EQUAL(impl.owner(i), pmap->owner(i));
if (impl.owner(i) == GlobalFixture::world->rank())
BOOST_CHECK(impl.is_local(i));
else
BOOST_CHECK(!impl.is_local(i));
}
}
BOOST_AUTO_TEST_CASE(shape_access) {
BOOST_CHECK(impl.shape().is_dense());
// Check that the tensor shape and s are the same
for (std::size_t i = 0; i < tr.tiles_range().volume(); ++i) {
BOOST_CHECK(!impl.shape().is_zero(i));
}
}
BOOST_AUTO_TEST_CASE(zero) {
BOOST_CHECK(impl.is_dense());
// Check that all tiles are non-zero when shape is dense
for (std::size_t i = 0; i < tr.tiles_range().volume(); ++i) {
BOOST_CHECK(!impl.is_zero(i));
}
// Check that every third tile is non-zero
for (std::size_t i = 0; i < tr.tiles_range().volume(); ++i) {
if (sp_impl.shape()[i] < SparseShape<float>::threshold()) {
BOOST_CHECK(sp_impl.is_zero(i));
} else {
BOOST_CHECK(!sp_impl.is_zero(i));
}
}
}
BOOST_AUTO_TEST_SUITE_END()
|