1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
|
/*! \file */
#ifndef _TILE_DATA_H
#define _TILE_DATA_H
#include <map>
#include <set>
#include <vector>
#include <memory>
#include <boost/sort/sort.hpp>
#include "output_object.h"
#include "append_vector.h"
#include "clip_cache.h"
#include "mmap_allocator.h"
#define TILE_DATA_ID_SIZE 34
typedef std::vector<class TileDataSource *> SourceList;
class TileBbox;
// We cluster output objects by z6 tile
#define CLUSTER_ZOOM 6
#define CLUSTER_ZOOM_WIDTH (1 << CLUSTER_ZOOM)
#define CLUSTER_ZOOM_AREA (CLUSTER_ZOOM_WIDTH * CLUSTER_ZOOM_WIDTH)
struct OutputObjectXY {
OutputObject oo;
Z6Offset x;
Z6Offset y;
};
class TileCoordinatesSet {
public:
TileCoordinatesSet(uint zoom);
bool test(TileCoordinate x, TileCoordinate y) const;
void set(TileCoordinate x, TileCoordinate y);
size_t size() const;
private:
uint zoom;
std::vector<bool> tiles;
};
struct OutputObjectXYID {
OutputObject oo;
Z6Offset x;
Z6Offset y;
uint64_t id;
};
template<typename OO> void finalizeObjects(
const std::string& name,
const size_t& threadNum,
const unsigned int& baseZoom,
typename std::vector<AppendVectorNS::AppendVector<OO>>::iterator begin,
typename std::vector<AppendVectorNS::AppendVector<OO>>::iterator end,
typename std::vector<std::vector<OO>>& lowZoom
) {
size_t z6OffsetDivisor = baseZoom >= CLUSTER_ZOOM ? (1 << (baseZoom - CLUSTER_ZOOM)) : 1;
#ifdef CLOCK_MONOTONIC
timespec startTs, endTs;
clock_gettime(CLOCK_MONOTONIC, &startTs);
#endif
int i = -1;
for (auto it = begin; it != end; it++) {
i++;
if (it->size() > 0 || i % 10 == 0 || i == 4095) {
std::cout << "\r" << name << ": finalizing z6 tile " << (i + 1) << "/" << CLUSTER_ZOOM_AREA;
#ifdef CLOCK_MONOTONIC
clock_gettime(CLOCK_MONOTONIC, &endTs);
uint64_t elapsedNs = 1e9 * (endTs.tv_sec - startTs.tv_sec) + endTs.tv_nsec - startTs.tv_nsec;
std::cout << " (" << std::to_string((uint32_t)(elapsedNs / 1e6)) << " ms)";
#endif
std::cout << std::flush;
}
if (it->size() == 0)
continue;
// We track a separate copy of low zoom objects to avoid scanning large
// lists of objects that may be on slow disk storage.
for (auto objectIt = it->begin(); objectIt != it->end(); objectIt++)
if (objectIt->oo.minZoom < CLUSTER_ZOOM)
lowZoom[i].push_back(*objectIt);
// If the user is doing a a small extract, there are few populated
// entries in `object`.
//
// e.g. Colorado has ~9 z6 tiles, 1 of which has 95% of its output
// objects.
//
// This optimizes for the small extract case by doing:
// - for each vector in objects
// - do a multi-threaded sort of vector
//
// For small extracts, this ensures that all threads are used even if
// only a handful of entries in `objects` are non-empty.
//
// For a global extract, this will have some overhead of repeatedly
// setting up/tearing down threads. In that case, it would be
// better to assign chunks of `objects` to each thread.
//
// That's a future performance improvement, so deferring for now.
boost::sort::block_indirect_sort(
it->begin(),
it->end(),
[baseZoom](const OO& a, const OO& b) {
// Cluster by parent zoom, so that a subsequent search
// can find a contiguous range of entries for any tile
// at zoom 6 or higher.
const size_t aX = a.x;
const size_t aY = a.y;
const size_t bX = b.x;
const size_t bY = b.y;
for (size_t z = CLUSTER_ZOOM; z <= baseZoom; z++) {
const auto aXz = aX / (1 << (baseZoom - z));
const auto bXz = bX / (1 << (baseZoom - z));
if (aXz != bXz)
return aXz < bXz;
const auto aYz = aY / (1 << (baseZoom - z));
const auto bYz = bY / (1 << (baseZoom - z));
if (aYz != bYz)
return aYz < bYz;
}
return false;
},
threadNum
);
}
std::cout << std::endl;
}
template<typename OO> void collectTilesWithObjectsAtZoomTemplate(
const unsigned int& baseZoom,
const typename std::vector<AppendVectorNS::AppendVector<OO>>::iterator objects,
const size_t size,
std::vector<TileCoordinatesSet>& zooms
) {
size_t maxZoom = zooms.size() - 1;
uint16_t z6OffsetDivisor = baseZoom >= CLUSTER_ZOOM ? (1 << (baseZoom - CLUSTER_ZOOM)) : 1;
int64_t lastX = -1;
int64_t lastY = -1;
for (size_t i = 0; i < size; i++) {
const size_t z6x = i / CLUSTER_ZOOM_WIDTH;
const size_t z6y = i % CLUSTER_ZOOM_WIDTH;
for (size_t j = 0; j < objects[i].size(); j++) {
// Compute the x, y at the base zoom level
TileCoordinate baseX = z6x * z6OffsetDivisor + objects[i][j].x;
TileCoordinate baseY = z6y * z6OffsetDivisor + objects[i][j].y;
// Translate the x, y at the requested zoom level
TileCoordinate x = baseX / (1 << (baseZoom - maxZoom));
TileCoordinate y = baseY / (1 << (baseZoom - maxZoom));
if (lastX != x || lastY != y) {
lastX = x;
lastY = y;
for (int zoom = maxZoom; zoom >= 0; zoom--) {
zooms[zoom].set(x, y);
x /= 2;
y /= 2;
}
}
}
}
}
template<typename OO>
OutputObjectID outputObjectWithId(const OO& input) {
return OutputObjectID({ input.oo, 0 });
}
template<>
inline OutputObjectID outputObjectWithId<OutputObjectXYID>(const OutputObjectXYID& input) {
return OutputObjectID({ input.oo, input.id });
}
template<typename OO> void collectLowZoomObjectsForTile(
const unsigned int& baseZoom,
typename std::vector<std::vector<OO>> objects,
unsigned int zoom,
const TileCoordinates& dstIndex,
std::vector<OutputObjectID>& output
) {
if (zoom >= CLUSTER_ZOOM)
throw std::runtime_error("collectLowZoomObjectsForTile should not be called for high zooms");
uint16_t z6OffsetDivisor = baseZoom >= CLUSTER_ZOOM ? (1 << (baseZoom - CLUSTER_ZOOM)) : 1;
for (size_t i = 0; i < objects.size(); i++) {
const size_t z6x = i / CLUSTER_ZOOM_WIDTH;
const size_t z6y = i % CLUSTER_ZOOM_WIDTH;
for (size_t j = 0; j < objects[i].size(); j++) {
// Compute the x, y at the base zoom level
TileCoordinate baseX = z6x * z6OffsetDivisor + objects[i][j].x;
TileCoordinate baseY = z6y * z6OffsetDivisor + objects[i][j].y;
// Translate the x, y at the requested zoom level
TileCoordinate x = baseX / (1 << (baseZoom - zoom));
TileCoordinate y = baseY / (1 << (baseZoom - zoom));
if (dstIndex.x == x && dstIndex.y == y) {
if (objects[i][j].oo.minZoom <= zoom) {
output.push_back(outputObjectWithId(objects[i][j]));
}
}
}
}
}
template<typename OO> void collectObjectsForTileTemplate(
const unsigned int& baseZoom,
typename std::vector<AppendVectorNS::AppendVector<OO>>::iterator objects,
size_t iStart,
size_t iEnd,
unsigned int zoom,
const TileCoordinates& dstIndex,
std::vector<OutputObjectID>& output
) {
if (zoom < CLUSTER_ZOOM)
throw std::runtime_error("collectObjectsForTileTemplate should not be called for low zooms");
uint16_t z6OffsetDivisor = baseZoom >= CLUSTER_ZOOM ? (1 << (baseZoom - CLUSTER_ZOOM)) : 1;
for (size_t i = iStart; i < iEnd; i++) {
// If z >= 6, we can compute the exact bounds within the objects array.
// Translate to the base zoom, then do a binary search to find
// the starting point.
TileCoordinate z6x = dstIndex.x / (1 << (zoom - CLUSTER_ZOOM));
TileCoordinate z6y = dstIndex.y / (1 << (zoom - CLUSTER_ZOOM));
TileCoordinate baseX = dstIndex.x * (1 << (baseZoom - zoom));
TileCoordinate baseY = dstIndex.y * (1 << (baseZoom - zoom));
Z6Offset needleX = baseX - z6x * z6OffsetDivisor;
Z6Offset needleY = baseY - z6y * z6OffsetDivisor;
// Kind of gross that we have to do this. Might be better if we split
// into two arrays, one of x/y and one of OOs. Would have better locality for
// searching, too.
OutputObject dummyOo(POINT_, 0, 0, 0, 0);
const size_t bz = baseZoom;
const OO targetXY = {dummyOo, needleX, needleY };
auto iter = std::lower_bound(
objects[i].begin(),
objects[i].end(),
targetXY,
[bz](const OO& a, const OO& b) {
// Cluster by parent zoom, so that a subsequent search
// can find a contiguous range of entries for any tile
// at zoom 6 or higher.
const size_t aX = a.x;
const size_t aY = a.y;
const size_t bX = b.x;
const size_t bY = b.y;
for (size_t z = CLUSTER_ZOOM; z <= bz; z++) {
const auto aXz = aX / (1 << (bz - z));
const auto aYz = aY / (1 << (bz - z));
const auto bXz = bX / (1 << (bz - z));
const auto bYz = bY / (1 << (bz - z));
if (aXz != bXz)
return aXz < bXz;
if (aYz != bYz)
return aYz < bYz;
}
return false;
}
);
for (; iter != objects[i].end(); iter++) {
// Compute the x, y at the base zoom level
TileCoordinate baseX = z6x * z6OffsetDivisor + iter->x;
TileCoordinate baseY = z6y * z6OffsetDivisor + iter->y;
// Translate the x, y at the requested zoom level
TileCoordinate x = baseX / (1 << (baseZoom - zoom));
TileCoordinate y = baseY / (1 << (baseZoom - zoom));
if (dstIndex.x == x && dstIndex.y == y) {
if (iter->oo.minZoom <= zoom) {
output.push_back(outputObjectWithId(*iter));
}
} else {
// Short-circuit when we're confident we'd no longer see relevant matches.
// We've ordered the entries in `objects` such that all objects that
// share the same tile at any zoom are in contiguous runs.
//
// Thus, as soon as we fail to find a match, we can stop looking.
break;
}
}
}
}
class TileDataSource {
public:
// Store for generated geometries
using point_store_t = std::vector<Point>;
using linestring_t = boost::geometry::model::linestring<Point, std::vector, mmap_allocator>;
using linestring_store_t = std::vector<linestring_t>;
using multi_linestring_t = boost::geometry::model::multi_linestring<linestring_t, std::vector, mmap_allocator>;
using multi_linestring_store_t = std::vector<multi_linestring_t>;
using polygon_t = boost::geometry::model::polygon<Point, true, true, std::vector, std::vector, mmap_allocator, mmap_allocator>;
using multi_polygon_t = boost::geometry::model::multi_polygon<polygon_t, std::vector, mmap_allocator>;
using multi_polygon_store_t = std::vector<multi_polygon_t>;
std::mutex storeMutex;
// Threads can grab one of the stores and work on them in a thread local.
std::vector<std::pair<size_t, point_store_t*>> availablePointStoreLeases;
std::vector<std::pair<size_t, linestring_store_t*>> availableLinestringStoreLeases;
std::vector<std::pair<size_t, multi_linestring_store_t*>> availableMultiLinestringStoreLeases;
std::vector<std::pair<size_t, multi_polygon_store_t*>> availableMultiPolygonStoreLeases;
virtual std::string name() const = 0;
protected:
size_t numShards;
uint8_t shardBits;
std::mutex mutex;
bool includeID;
uint16_t z6OffsetDivisor;
// Guards objects, objectsWithIds.
std::vector<std::mutex> objectsMutex;
// The top-level vector has 1 entry per z6 tile, indexed by x*64 + y
// The inner vector contains the output objects that are contained in that z6 tile
//
// In general, only one of these vectors will be populated.
//
// If config.include_ids is true, objectsWithIds will be populated.
// Otherwise, objects.
std::vector<AppendVectorNS::AppendVector<OutputObjectXY>> objects;
std::vector<std::vector<OutputObjectXY>> lowZoomObjects;
std::vector<AppendVectorNS::AppendVector<OutputObjectXYID>> objectsWithIds;
std::vector<std::vector<OutputObjectXYID>> lowZoomObjectsWithIds;
// rtree index of large objects
using oo_rtree_param_type = boost::geometry::index::quadratic<128>;
boost::geometry::index::rtree< std::pair<Box,OutputObject>, oo_rtree_param_type> boxRtree;
boost::geometry::index::rtree< std::pair<Box,OutputObjectID>, oo_rtree_param_type> boxRtreeWithIds;
unsigned int baseZoom;
std::vector<point_store_t> pointStores;
std::vector<linestring_store_t> linestringStores;
std::vector<multi_linestring_store_t> multilinestringStores;
std::vector<multi_polygon_store_t> multipolygonStores;
ClipCache<MultiPolygon> multiPolygonClipCache;
ClipCache<MultiLinestring> multiLinestringClipCache;
std::deque<std::vector<std::tuple<TileCoordinates, OutputObject, uint64_t>>> pendingSmallIndexObjects;
public:
TileDataSource(size_t threadNum, unsigned int baseZoom, bool includeID);
void collectTilesWithObjectsAtZoom(std::vector<TileCoordinatesSet>& zooms);
void collectTilesWithLargeObjectsAtZoom(std::vector<TileCoordinatesSet>& zooms);
void collectObjectsForTile(uint zoom, TileCoordinates dstIndex, std::vector<OutputObjectID>& output);
void finalize(size_t threadNum);
void addGeometryToIndex(
const Linestring& geom,
const std::vector<OutputObject>& outputs,
const uint64_t id
);
void addGeometryToIndex(
const MultiLinestring& geom,
const std::vector<OutputObject>& outputs,
const uint64_t id
);
void addGeometryToIndex(
const MultiPolygon& geom,
std::vector<OutputObject>& outputs, // so we can mutate objectID to skip clip cache
const uint64_t id
);
void addObjectToSmallIndex(const TileCoordinates& index, const OutputObject& oo, uint64_t id);
void addObjectToSmallIndex(const TileCoordinates& index, const OutputObject& oo, uint64_t id, bool needsLock);
void addObjectToSmallIndexUnsafe(const TileCoordinates& index, const OutputObject& oo, uint64_t id);
void addObjectToLargeIndex(const Box& envelope, const OutputObject& oo, uint64_t id) {
std::lock_guard<std::mutex> lock(mutex);
if (id == 0 || !includeID)
boxRtree.insert(std::make_pair(envelope, oo));
else
boxRtreeWithIds.insert(std::make_pair(envelope, OutputObjectID({oo, id})));
}
void collectLargeObjectsForTile(uint zoom, TileCoordinates dstIndex, std::vector<OutputObjectID>& output);
std::vector<OutputObjectID> getObjectsForTile(
const std::vector<bool>& sortOrders,
unsigned int zoom,
TileCoordinates coordinates
);
virtual Geometry buildWayGeometry(OutputGeometryType const geomType, NodeID const objectID, const TileBbox &bbox);
virtual LatpLon buildNodeGeometry(NodeID const objectID, const TileBbox &bbox) const;
void open() {
// Put something at index 0 of all stores so that 0 can be used
// as a sentinel.
pointStores[0].push_back(Point(0,0));
linestringStores[0].push_back(linestring_t());
multipolygonStores[0].push_back(multi_polygon_t());
multilinestringStores[0].push_back(multi_linestring_t());
}
void reportSize() const;
// Accessors for generated geometries
using handle_t = void *;
NodeID storePoint(Point const &input);
inline size_t getShard(NodeID id) const {
// Note: we only allocate 34 bits for the IDs. This allows us to
// use bits 35 and 36 for TileDataSource-specific handling (e.g.,
// OsmMemTiles may want to generate points/ways on the fly by
// referring to the WayStore).
return id >> (TILE_DATA_ID_SIZE - shardBits);
}
virtual void populateMultiPolygon(MultiPolygon& dst, NodeID objectID);
inline size_t getId(NodeID id) const {
return id & (~(~0ull << (TILE_DATA_ID_SIZE - shardBits)));
}
const Point& retrievePoint(NodeID id) const {
const auto& shardId = getShard(id);
const auto& shard = pointStores[shardId];
const auto offset = getId(id);
if (offset > shard.size()) throw std::out_of_range("Could not find generated node with id " + std::to_string(id) + ", shard " + std::to_string(shardId) + ", offset=" + std::to_string(offset));
return shard.at(offset);
}
NodeID storeLinestring(const Linestring& src);
const linestring_t& retrieveLinestring(NodeID id) const {
const auto& shardId = getShard(id);
const auto& shard = linestringStores[shardId];
const auto offset = getId(id);
if (offset > shard.size()) throw std::out_of_range("Could not find generated linestring with id " + std::to_string(id) + ", shard " + std::to_string(shardId) + ", offset=" + std::to_string(offset));
return shard.at(offset);
}
NodeID storeMultiLinestring(const MultiLinestring& src);
multi_linestring_t const &retrieveMultiLinestring(NodeID id) const {
const auto& shardId = getShard(id);
const auto& shard = multilinestringStores[shardId];
const auto offset = getId(id);
if (offset > shard.size()) throw std::out_of_range("Could not find generated multi-linestring with id " + std::to_string(id) + ", shard " + std::to_string(shardId) + ", offset=" + std::to_string(offset));
return shard.at(offset);
}
NodeID storeMultiPolygon(const MultiPolygon& src);
multi_polygon_t const &retrieveMultiPolygon(NodeID id) const {
const auto& shardId = getShard(id);
const auto& shard = multipolygonStores[shardId];
const auto offset = getId(id);
if (offset > shard.size()) throw std::out_of_range("Could not find generated multi-polygon with id " + std::to_string(id) + ", shard " + std::to_string(shardId) + ", offset=" + std::to_string(offset));
return shard.at(offset);
}
};
void populateTilesAtZoom(
const std::vector<class TileDataSource *>& sources,
std::vector<TileCoordinatesSet>& zooms
);
#endif //_TILE_DATA_H
|