File: compression_defaults.sql

package info (click to toggle)
timescaledb 2.24.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 13,552 kB
  • sloc: ansic: 58,664; sql: 24,761; sh: 1,742; python: 1,254; perl: 78; makefile: 14
file content (383 lines) | stat: -rw-r--r-- 14,929 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
-- This file and its contents are licensed under the Apache License 2.0.
-- Please see the included NOTICE for copyright information and
-- LICENSE-APACHE for a copy of the license.


-- This function return a jsonb with the following keys:
-- - columns: an array of column names that shold be used for segment by
-- - confidence: a number between 0 and 10 (most confident) indicating how sure we are.
-- - message: a message that should be displayed to the user to evaluate the result.
CREATE OR REPLACE FUNCTION _timescaledb_functions.get_segmentby_defaults(
    relation regclass
)
    RETURNS JSONB LANGUAGE PLPGSQL AS
$BODY$
DECLARE
    _table_name NAME;
    _schema_name NAME;
    _hypertable_row _timescaledb_catalog.hypertable;
    _segmentby NAME;
    _cnt int;
BEGIN
    SELECT n.nspname, c.relname INTO STRICT _schema_name, _table_name
    FROM pg_class c
    INNER JOIN pg_namespace n ON (n.oid = c.relnamespace)
    WHERE c.oid = relation;

    SELECT * INTO STRICT _hypertable_row FROM _timescaledb_catalog.hypertable h WHERE h.table_name = _table_name AND h.schema_name = _schema_name;

    --STEP 1 if column stats exist use unique indexes.
    --Pick the column that comes first in any such indexes
    --Select the column such that tuples are segmented evenly across distinct values.
    --Note: this will only pick a column that is NOT unique in a multi-column unique index.
    with index_attr as (
      SELECT
        a.attnum, min(a.pos) as pos
      FROM (
        SELECT indkey, indnkeyatts
        FROM pg_catalog.pg_index
        WHERE indisunique AND indrelid = relation
      ) i
      INNER JOIN LATERAL (
        SELECT * FROM unnest(i.indkey) WITH ORDINALITY
      ) a(attnum, pos) ON TRUE
      WHERE a.pos <= i.indnkeyatts
      GROUP BY a.attnum
    ),
    stats_with_stddev as (
      SELECT
        a.attname,
        i.pos,
        ROUND(stddev_pop(freqs)::numeric, 5) as freq_stddev
      FROM index_attr i
      INNER JOIN pg_attribute a ON a.attnum = i.attnum AND a.attrelid = relation
      INNER JOIN pg_type t ON t.oid = a.atttypid
      INNER JOIN pg_stats s ON s.attname = a.attname
                            AND s.schemaname = _schema_name
                            AND s.tablename = _table_name
                            AND s.inherited = true
      LEFT JOIN LATERAL unnest(s.most_common_freqs) as freqs ON TRUE
      WHERE a.attname NOT IN (
        SELECT column_name
        FROM _timescaledb_catalog.dimension d
        WHERE d.hypertable_id = _hypertable_row.id
      )
      AND s.n_distinct > 1
      -- exclude date/time type category
      AND t.typcategory NOT IN ('D')
      GROUP BY a.attname, i.pos
    )
    SELECT attname
    INTO _segmentby
    FROM stats_with_stddev
    ORDER BY pos ASC, freq_stddev ASC NULLS LAST
    LIMIT 1;

    IF FOUND THEN
        return json_build_object('columns', json_build_array(_segmentby), 'confidence', 10);
    END IF;


    --STEP 2 if column stats exist and no unique indexes use non-unique indexes.
    --Pick the column that comes first in any such indexes
    --Select the column such that tuples are segmented evenly across distinct values.
    with index_attr as (
        SELECT
        a.attnum, min(a.pos) as pos
        FROM
            (select indkey, indnkeyatts from pg_catalog.pg_index where NOT indisunique and indrelid = relation) i
        INNER JOIN LATERAL
            (select * from unnest(i.indkey) with ordinality) a(attnum, pos) ON (TRUE)
        WHERE a.pos <= i.indnkeyatts
        GROUP BY 1
    ),
    stats_with_stddev as (
      SELECT
        a.attname,
        i.pos,
        ROUND(stddev_pop(freqs)::numeric, 5) as freq_stddev
      FROM index_attr i
      INNER JOIN pg_attribute a ON a.attnum = i.attnum AND a.attrelid = relation
      INNER JOIN pg_type t ON t.oid = a.atttypid
      INNER JOIN pg_stats s ON s.attname = a.attname
                            AND s.schemaname = _schema_name
                            AND s.tablename = _table_name
                            AND s.inherited = true
      LEFT JOIN LATERAL unnest(s.most_common_freqs) as freqs ON TRUE
      WHERE a.attname NOT IN (
        SELECT column_name
        FROM _timescaledb_catalog.dimension d
        WHERE d.hypertable_id = _hypertable_row.id
      )
      AND s.n_distinct > 1
      AND t.typcategory NOT IN ('D')
      GROUP BY a.attname, i.pos
    )
    SELECT attname
    INTO _segmentby
    FROM stats_with_stddev
    ORDER BY pos ASC, freq_stddev ASC NULLS LAST
    LIMIT 1;

    IF FOUND THEN
        return json_build_object('columns', json_build_array(_segmentby), 'confidence', 8);
    END IF;

    --STEP 3 if column stats exist but there are no indexes
    --Select the column such that tuples are segmented evenly across distinct values.
    with stats_with_stddev as (
      SELECT
        a.attname,
        ROUND(stddev_pop(freqs)::numeric, 5) as freq_stddev
      FROM pg_attribute a
      INNER JOIN pg_type t ON t.oid = a.atttypid
      INNER JOIN pg_stats s ON s.attname = a.attname
                            AND s.schemaname = _schema_name
                            AND s.tablename = _table_name
                            AND s.inherited = true
      LEFT JOIN LATERAL unnest(s.most_common_freqs) as freqs ON TRUE
      WHERE a.attrelid = relation
        AND a.attname NOT IN (
          SELECT column_name
          FROM _timescaledb_catalog.dimension d
          WHERE d.hypertable_id = _hypertable_row.id
        )
      AND s.n_distinct > 1
      AND t.typcategory NOT IN ('D')
      GROUP BY a.attname
    )
    SELECT attname
    INTO _segmentby
    FROM stats_with_stddev
    ORDER BY freq_stddev ASC NULLS LAST
    LIMIT 1;

    IF FOUND THEN
        return json_build_object('columns', json_build_array(_segmentby), 'confidence', 7);
    END IF;

    --STEP 4 if column stats do not exist use non-unique indexes. Pick the column that comes first in any such indexes. Ties are broken arbitrarily.
    with index_attr as (
        SELECT
        a.attnum, min(a.pos) as pos
        FROM
            (select indkey, indnkeyatts from pg_catalog.pg_index where NOT indisunique and indrelid = relation) i
        INNER JOIN LATERAL
            (select * from unnest(i.indkey) with ordinality) a(attnum, pos) ON (TRUE)
        WHERE a.pos <= i.indnkeyatts
        GROUP BY 1
    )
    SELECT
      a.attname INTO _segmentby
    FROM
      index_attr i
    INNER JOIN
      pg_attribute a on (a.attnum = i.attnum AND a.attrelid = relation)
    INNER JOIN
      pg_type t ON t.oid = a.atttypid
    LEFT JOIN
      pg_catalog.pg_attrdef ad ON (ad.adrelid = relation AND ad.adnum = a.attnum)
    LEFT JOIN pg_stats s ON s.attname = a.attname
                          AND s.schemaname = _schema_name
                          AND s.tablename = _table_name
                          AND s.inherited = true
    WHERE
      a.attname NOT IN (SELECT column_name FROM _timescaledb_catalog.dimension d WHERE d.hypertable_id = _hypertable_row.id)
      AND s.n_distinct is null
      AND a.attidentity = '' AND (ad.adbin IS NULL OR pg_get_expr(adbin, adrelid) not like 'nextval%')
      AND t.typcategory NOT IN ('D')
    ORDER BY i.pos
    LIMIT 1;

    IF FOUND THEN
        return json_build_object(
            'columns', json_build_array(_segmentby),
            'confidence', 5,
            'message',  'Please make sure '|| _segmentby||' is not a unique column and appropriate for a segment by');
    END IF;

    --STEP 5 if column stats do not exist and no non-unique indexes, use unique indexes. Pick the column that comes first in any such indexes. Ties are broken arbitrarily.
    with index_attr as (
        SELECT
        a.attnum, min(a.pos) as pos
        FROM
            (select indkey, indnkeyatts from pg_catalog.pg_index where indisunique and indrelid = relation) i
        INNER JOIN LATERAL
            (select * from unnest(i.indkey) with ordinality) a(attnum, pos) ON (TRUE)
        WHERE a.pos <= i.indnkeyatts
        GROUP BY 1
    )
    SELECT
      a.attname INTO _segmentby
    FROM
      index_attr i
    INNER JOIN
      pg_attribute a on (a.attnum = i.attnum AND a.attrelid = relation)
    INNER JOIN
      pg_type t ON t.oid = a.atttypid
    LEFT JOIN
      pg_catalog.pg_attrdef ad ON (ad.adrelid = relation AND ad.adnum = a.attnum)
    LEFT JOIN pg_stats s ON s.attname = a.attname
                          AND s.schemaname = _schema_name
                          AND s.tablename = _table_name
                          AND s.inherited = true
    WHERE
      a.attname NOT IN (SELECT column_name FROM _timescaledb_catalog.dimension d WHERE d.hypertable_id = _hypertable_row.id)
      AND s.n_distinct is null
      AND a.attidentity = '' AND (ad.adbin IS NULL OR pg_get_expr(adbin, adrelid) not like 'nextval%')
      AND t.typcategory NOT IN ('D')
    ORDER BY i.pos
    LIMIT 1;

    IF FOUND THEN
            return json_build_object(
            'columns', json_build_array(_segmentby),
            'confidence', 5,
            'message',  'Please make sure '|| _segmentby||' is not a unique column and appropriate for a segment by');
    END IF;


    --are there any indexed columns that are not dimemsions and are not serial/identity?
    with index_attr as (
        SELECT
        a.attnum, min(a.pos) as pos
        FROM
            (select indkey, indnkeyatts from pg_catalog.pg_index where indisunique and indrelid = relation) i
        INNER JOIN LATERAL
            (select * from unnest(i.indkey) with ordinality) a(attnum, pos) ON (TRUE)
        WHERE a.pos <= i.indnkeyatts
        GROUP BY 1
    )
    SELECT
      count(*) INTO STRICT _cnt
    FROM
      index_attr i
    INNER JOIN
      pg_attribute a on (a.attnum = i.attnum AND a.attrelid = relation)
    INNER JOIN
      pg_type t ON t.oid = a.atttypid
    LEFT JOIN
      pg_catalog.pg_attrdef ad ON (ad.adrelid = relation AND ad.adnum = a.attnum)
    WHERE
      a.attname NOT IN (SELECT column_name FROM _timescaledb_catalog.dimension d WHERE d.hypertable_id = _hypertable_row.id)
      AND a.attidentity = '' AND (ad.adbin IS NULL OR pg_get_expr(adbin, adrelid) not like 'nextval%')
      AND t.typcategory NOT IN ('D');

    IF _cnt > 0 THEN
        --there are many potential candidates. We do not have enough information to choose one.
        return json_build_object(
            'columns', json_build_array(),
            'confidence', 0,
            'message',  'Several columns are potential segment by candidates and we do not have enough information to choose one. Please use the segment_by option to explicitly specify the segment_by column');
    ELSE
        --there are no potential candidates. There is a good chance no segment by is the correct choice.
        return json_build_object(
            'columns', json_build_array(),
            'confidence', 5,
            'message',  'You do not have any indexes on columns that can be used for segment_by and thus we are not using segment_by for converting to columnstore. Please make sure you are not missing any indexes');
    END IF;
END
$BODY$ SET search_path TO pg_catalog, pg_temp;

-- This function return a jsonb with the following keys:
-- - clauses: an array of column names and sort order key words that shold be used for order by.
-- - confidence: a number between 0 and 10 (most confident) indicating how sure we are.
-- - message: a message that should be shown to the user to evaluate the result.
CREATE OR REPLACE FUNCTION _timescaledb_functions.get_orderby_defaults(
    relation regclass, segment_by_cols text[]
)
    RETURNS JSONB LANGUAGE PLPGSQL AS
$BODY$
DECLARE
    _table_name NAME;
    _schema_name NAME;
    _hypertable_row _timescaledb_catalog.hypertable;
    _orderby_names NAME[];
    _dimension_names NAME[];
    _first_index_attrs NAME[];
    _orderby_clauses text[];
    _confidence int;
BEGIN
    SELECT n.nspname, c.relname INTO STRICT _schema_name, _table_name
    FROM pg_class c
    INNER JOIN pg_namespace n ON (n.oid = c.relnamespace)
    WHERE c.oid = relation;

    SELECT * INTO STRICT _hypertable_row FROM _timescaledb_catalog.hypertable h WHERE h.table_name = _table_name AND h.schema_name = _schema_name;

    --start with the unique index columns minus the segment by columns
    with index_attr as (
        SELECT
        a.attnum, min(a.pos) as pos
        FROM
             --is there a better way to pick the right unique index if there are multiple?
            (select indkey, indnkeyatts from pg_catalog.pg_index where indisunique and indrelid = relation limit 1) i
        INNER JOIN LATERAL
            (select * from unnest(i.indkey) with ordinality) a(attnum, pos) ON (TRUE)
        WHERE a.pos <= i.indnkeyatts
        GROUP BY 1
    )
    SELECT
      array_agg(a.attname ORDER BY i.pos) INTO _orderby_names
    FROM
      index_attr i
    INNER JOIN
      pg_attribute a on (a.attnum = i.attnum AND a.attrelid = relation)
    WHERE
      NOT(a.attname::text = ANY (segment_by_cols));

    if _orderby_names is null then
        _orderby_names := array[]::name[];
        _confidence := 5;
    else
        _confidence := 8;
    end if;

    --add dimension colomns to the end. A dimension column like time should probably always be part of the order by.
    SELECT
      array_agg(d.column_name) INTO _dimension_names
    FROM _timescaledb_catalog.dimension d
    WHERE
      d.hypertable_id = _hypertable_row.id
      AND NOT(d.column_name::text = ANY (_orderby_names))
      AND NOT(d.column_name::text = ANY (segment_by_cols));
    _orderby_names := _orderby_names || _dimension_names;

    --add the first attribute of any index
    with index_attr as (
        SELECT
        a.attnum, min(a.pos) as pos
        FROM
            (select indkey, indnkeyatts from pg_catalog.pg_index where indrelid = relation) i
        INNER JOIN LATERAL
            (select * from unnest(i.indkey) with ordinality) a(attnum, pos) ON (TRUE)
        WHERE a.pos = 1
        GROUP BY 1
    )
    SELECT
      array_agg(a.attname ORDER BY i.pos) INTO _first_index_attrs
    FROM
      index_attr i
    INNER JOIN
      pg_attribute a on (a.attnum = i.attnum AND a.attrelid = relation)
    WHERE
          NOT(a.attname::text = ANY (_orderby_names))
      AND NOT(a.attname::text = ANY (segment_by_cols));

    _orderby_names := _orderby_names || _first_index_attrs;

    --add DESC to any dimensions
    SELECT
      coalesce(array_agg(
      CASE WHEN d.column_name IS NULL THEN
        format('%I', a.colname)
      ELSE
        format('%I DESC', a.colname)
      END ORDER BY pos), array[]::text[]) INTO STRICT _orderby_clauses
    FROM unnest(_orderby_names) WITH ORDINALITY as a(colname, pos)
    LEFT JOIN _timescaledb_catalog.dimension d ON (d.column_name = a.colname AND d.hypertable_id = _hypertable_row.id);


    return json_build_object('clauses', _orderby_clauses, 'confidence', _confidence);
END
$BODY$ SET search_path TO pg_catalog, pg_temp;