File: freq.c

package info (click to toggle)
timidity 2.13.2-40.2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 13,132 kB
  • ctags: 20,555
  • sloc: ansic: 158,296; sh: 3,778; makefile: 1,156; tcl: 1,048; lisp: 499; perl: 285; ruby: 126
file content (736 lines) | stat: -rw-r--r-- 21,899 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
/*
    TiMidity++ -- MIDI to WAVE converter and player
    Copyright (C) 1999-2002 Masanao Izumo <mo@goice.co.jp>
    Copyright (C) 1995 Tuukka Toivonen <tt@cgs.fi>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
*/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif /* HAVE_CONFIG_H */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "timidity.h"
#include "common.h"
#include "instrum.h"
#include "freq.h"
#include "fft4g.h"

float *floatdata, *magdata, *prunemagdata;
int *ip;
float *w;
uint32 oldfftsize = 0;
float pitchmags[129];
double pitchbins[129];
double new_pitchbins[129];
int *fft1_bin_to_pitch;

/* middle C = pitch 60 = 261.6 Hz
   freq     = 13.75 * exp((pitch - 9) / 12 * log(2))
   pitch    = 9 - log(13.75 / freq) * 12 / log(2)
            = -36.37631656 + 17.31234049 * log(freq)
*/
float pitch_freq_table[129] = {
    8.17579892, 8.66195722, 9.17702400, 9.72271824, 10.3008612, 10.9133822,
    11.5623257, 12.2498574, 12.9782718, 13.7500000, 14.5676175, 15.4338532,

    16.3515978, 17.3239144, 18.3540480, 19.4454365, 20.6017223, 21.8267645,
    23.1246514, 24.4997147, 25.9565436, 27.5000000, 29.1352351, 30.8677063,

    32.7031957, 34.6478289, 36.7080960, 38.8908730, 41.2034446, 43.6535289,
    46.2493028, 48.9994295, 51.9130872, 55.0000000, 58.2704702, 61.7354127,

    65.4063913, 69.2956577, 73.4161920, 77.7817459, 82.4068892, 87.3070579,
    92.4986057, 97.9988590, 103.826174, 110.000000, 116.540940, 123.470825,

    130.812783, 138.591315, 146.832384, 155.563492, 164.813778, 174.614116,
    184.997211, 195.997718, 207.652349, 220.000000, 233.081881, 246.941651,

    261.625565, 277.182631, 293.664768, 311.126984, 329.627557, 349.228231,
    369.994423, 391.995436, 415.304698, 440.000000, 466.163762, 493.883301,

    523.251131, 554.365262, 587.329536, 622.253967, 659.255114, 698.456463,
    739.988845, 783.990872, 830.609395, 880.000000, 932.327523, 987.766603,

    1046.50226, 1108.73052, 1174.65907, 1244.50793, 1318.51023, 1396.91293,
    1479.97769, 1567.98174, 1661.21879, 1760.00000, 1864.65505, 1975.53321,

    2093.00452, 2217.46105, 2349.31814, 2489.01587, 2637.02046, 2793.82585,
    2959.95538, 3135.96349, 3322.43758, 3520.00000, 3729.31009, 3951.06641,

    4186.00904, 4434.92210, 4698.63629, 4978.03174, 5274.04091, 5587.65170,
    5919.91076, 6271.92698, 6644.87516, 7040.00000, 7458.62018, 7902.13282,

    8372.01809, 8869.84419, 9397.27257, 9956.06348, 10548.0818, 11175.3034,
    11839.8215, 12543.8540, 13289.7503
};



/* center_pitch + 0.49999 */
float pitch_freq_ub_table[129] = {
    8.41536325, 8.91576679, 9.44592587, 10.0076099, 10.6026933, 11.2331623,
    11.9011208, 12.6087983, 13.3585565, 14.1528976, 14.9944727, 15.8860904,
    16.8307265, 17.8315336, 18.8918517, 20.0152197, 21.2053866, 22.4663245,
    23.8022417, 25.2175966, 26.7171129, 28.3057952, 29.9889453, 31.7721808,
    33.6614530, 35.6630672, 37.7837035, 40.0304394, 42.4107732, 44.9326490,
    47.6044834, 50.4351932, 53.4342259, 56.6115903, 59.9778907, 63.5443616,
    67.3229060, 71.3261343, 75.5674070, 80.0608788, 84.8215464, 89.8652980,
    95.2089667, 100.870386, 106.868452, 113.223181, 119.955781, 127.088723,
    134.645812, 142.652269, 151.134814, 160.121758, 169.643093, 179.730596,
    190.417933, 201.740773, 213.736904, 226.446361, 239.911563, 254.177446,
    269.291624, 285.304537, 302.269628, 320.243515, 339.286186, 359.461192,
    380.835867, 403.481546, 427.473807, 452.892723, 479.823125, 508.354893,
    538.583248, 570.609074, 604.539256, 640.487030, 678.572371, 718.922384,
    761.671734, 806.963092, 854.947614, 905.785445, 959.646250, 1016.70979,
    1077.16650, 1141.21815, 1209.07851, 1280.97406, 1357.14474, 1437.84477,
    1523.34347, 1613.92618, 1709.89523, 1811.57089, 1919.29250, 2033.41957,
    2154.33299, 2282.43630, 2418.15702, 2561.94812, 2714.28948, 2875.68954,
    3046.68693, 3227.85237, 3419.79046, 3623.14178, 3838.58500, 4066.83914,
    4308.66598, 4564.87260, 4836.31405, 5123.89624, 5428.57897, 5751.37907,
    6093.37387, 6455.70474, 6839.58092, 7246.28356, 7677.17000, 8133.67829,
    8617.33197, 9129.74519, 9672.62809, 10247.7925, 10857.1579, 11502.7581,
    12186.7477, 12911.4095, 13679.1618
};



/* center_pitch - 0.49999 */
float pitch_freq_lb_table[129] = {
    7.94305438, 8.41537297, 8.91577709, 9.44593678, 10.0076214, 10.6027055,
    11.2331752, 11.9011346, 12.6088129, 13.3585719, 14.1529139, 14.9944900,
    15.8861088, 16.8307459, 17.8315542, 18.8918736, 20.0152428, 21.2054111,
    22.4663505, 23.8022692, 25.2176258, 26.7171438, 28.3058279, 29.9889800,
    31.7722175, 33.6614919, 35.6631084, 37.7837471, 40.0304857, 42.4108222,
    44.9327009, 47.6045384, 50.4352515, 53.4342876, 56.6116557, 59.9779599,
    63.5444350, 67.3229838, 71.3262167, 75.5674943, 80.0609713, 84.8216444,
    89.8654018, 95.2090767, 100.870503, 106.868575, 113.223311, 119.955920,
    127.088870, 134.645968, 142.652433, 151.134989, 160.121943, 169.643289,
    179.730804, 190.418153, 201.741006, 213.737151, 226.446623, 239.911840,
    254.177740, 269.291935, 285.304867, 302.269977, 320.243885, 339.286578,
    359.461607, 380.836307, 403.482012, 427.474301, 452.893246, 479.823680,
    508.355480, 538.583870, 570.609734, 604.539954, 640.487770, 678.573155,
    718.923215, 761.672614, 806.964024, 854.948602, 905.786491, 959.647359,
    1016.71096, 1077.16774, 1141.21947, 1209.07991, 1280.97554, 1357.14631,
    1437.84643, 1523.34523, 1613.92805, 1709.89720, 1811.57298, 1919.29472,
    2033.42192, 2154.33548, 2282.43893, 2418.15982, 2561.95108, 2714.29262,
    2875.69286, 3046.69045, 3227.85610, 3419.79441, 3623.14597, 3838.58944,
    4066.84384, 4308.67096, 4564.87787, 4836.31963, 5123.90216, 5428.58524,
    5751.38572, 6093.38091, 6455.71219, 6839.58882, 7246.29193, 7677.17887,
    8133.68768, 8617.34192, 9129.75574, 9672.63927, 10247.8043, 10857.1705,
    11502.7714, 12186.7618, 12911.4244
};



/* (M)ajor,		rotate back 1,	rotate back 2
   (m)inor,		rotate back 1,	rotate back 2
   (d)iminished minor,	rotate back 1,	rotate back 2
   (f)ifth,		rotate back 1,	rotate back 2
*/
int chord_table[4][3][3] = {
 { { 0, 4, 7, }, { -5, 0, 4, }, { -8, -5, 0, }, },
 { { 0, 3, 7, }, { -5, 0, 3, }, { -9, -5, 0, }, },
 { { 0, 3, 6, }, { -6, 0, 3, }, { -9, -6, 0, }, },
 { { 0, 5, 7, }, { -5, 0, 5, }, { -7, -5, 0, }, },
};

/* write the chord type to *chord, returns the root note of the chord */
int assign_chord(double *pitchbins, int *chord,
		 int min_guesspitch, int max_guesspitch, int root_pitch)
{

    int type, subtype;
    int pitches[19] = {0};
    int prune_pitches[10] = {0};
    int i, j, k, n, n2;
    double val, cutoff, max;
    //int start = 0;
    int root_flag;

    *chord = -1;

    if (root_pitch - 9 > min_guesspitch)
    	min_guesspitch = root_pitch - 9;

    if (min_guesspitch <= LOWEST_PITCH)
    	min_guesspitch = LOWEST_PITCH + 1;

    if (root_pitch + 9 < max_guesspitch)
    	max_guesspitch = root_pitch + 9;

    if (max_guesspitch >= HIGHEST_PITCH)
    	max_guesspitch = HIGHEST_PITCH - 1;

    /* keep only local maxima */
    for (i = min_guesspitch, n = 0; i <= max_guesspitch; i++)
    {
	val = pitchbins[i];
	if (val)
	{
	    if (pitchbins[i-1] < val && pitchbins[i+1] < val)
		pitches[n++] = i;
	}
    }

    if (n < 3)
    	return -1;

    /* find largest peak */
    max = -1;
    for (i = 0; i < n; i++)
    {
    	val = pitchbins[pitches[i]];
    	if (val > max)
    	    max = val;
    }

    /* discard any peaks below cutoff */
    cutoff = 0.2 * max;
    for (i = 0, n2 = 0, root_flag = 0; i < n; i++)
    {
    	val = pitchbins[pitches[i]];
    	if (val >= cutoff)
    	{
    	    prune_pitches[n2++] = pitches[i];
    	    if (pitches[i] == root_pitch)
    	    	root_flag = 1;
    	}
    }
    
    if (!root_flag || n2 < 3)
    	return -1;

    /* search for a chord, must contain root pitch */
    for (i = 0; i < n2; i++)
    {
    	for (subtype = 0; subtype < 3; subtype++)
    	{
    	    if (i + subtype >= n2)
    	    	continue;

	    for (type = 0; type < 4; type++)
	    {
    	    	for (j = 0, n = 0, root_flag = 0; j < 3; j++)
    	    	{
		    k = i + j;

    	    	    if (k >= n2)
    	    	    	continue;
    	    	    
    	    	    if (prune_pitches[k] == root_pitch)
    	    	    	root_flag = 1;

		    if (prune_pitches[k] - prune_pitches[i+subtype] ==
		    	chord_table[type][subtype][j])
			    n++;
    	    	}
	    	if (root_flag && n == 3)
	    	{
		    *chord = 3 * type + subtype;
		    return prune_pitches[i+subtype];
	    	}
    	    }
    	}
    }

    return -1;
}



/* initialize FFT arrays for the frequency analysis */
int freq_initialize_fft_arrays(Sample *sp)
{

    uint32 i;
    uint32 length, newlength;
    unsigned int rate;
    sample_t *origdata;

    rate = sp->sample_rate;
    length = sp->data_length >> FRACTION_BITS;
    origdata = sp->data;

    /* copy the sample to a new float array */
    floatdata = (float *) safe_malloc(length * sizeof(float));
    for (i = 0; i < length; i++)
	floatdata[i] = origdata[i];

    /* length must be a power of 2 */
    /* set it to smallest power of 2 >= 1.4*rate */
    /* at least 1.4*rate is required for decent resolution of low notes */
    newlength = pow(2, ceil(log(1.4*rate) / log(2)));
    if (length < newlength)
    {
	floatdata = safe_realloc(floatdata, newlength * sizeof(float));
	memset(floatdata + length, 0, (newlength - length) * sizeof(float));
    }
    length = newlength;

    /* allocate FFT arrays */
    /* calculate sin/cos and fft1_bin_to_pitch tables */
    if (length != oldfftsize)
    {
        float f0;
    
        if (oldfftsize > 0)
        {
            free(magdata);
            free(prunemagdata);
            free(ip);
            free(w);
            free(fft1_bin_to_pitch);
        }
        magdata = (float *) safe_malloc(length * sizeof(float));
        prunemagdata = (float *) safe_malloc(length * sizeof(float));
        ip = (int *) safe_malloc(2 + sqrt(length) * sizeof(int));
        *ip = 0;
        w = (float *) safe_malloc((length >> 1) * sizeof(float));
        fft1_bin_to_pitch = safe_malloc((length >> 1) * sizeof(float));

        for (i = 1, f0 = (float) rate / length; i < (length >> 1); i++) {
            fft1_bin_to_pitch[i] = assign_pitch_to_freq(i * f0);
        }
    }
    oldfftsize = length;

    /* zero out arrays that need it */
    memset(pitchmags, 0, 129 * sizeof(float));
    memset(pitchbins, 0, 129 * sizeof(double));
    memset(new_pitchbins, 0, 129 * sizeof(double));
    memset(prunemagdata, 0, length * sizeof(float));

    return(length);
}



/* return the frequency of the sample */
/* max of 1.4 - 2.0 seconds of audio is analyzed, depending on sample rate */
/* samples < 1.4 seconds are padded to max length for higher fft accuracy */
float freq_fourier(Sample *sp, int *chord)
{

    uint32 length, length0;
    int32 maxoffset, minoffset, minoffset1, minoffset2;
    int32 minbin, maxbin;
    //int32 bestbin;
    int32 bin, largest_peak;
    int32 i, j, n, total;
    unsigned int rate;
    int pitch, bestpitch, minpitch, maxpitch, maxpitch2;
    sample_t *origdata;
    float f0, mag, maxmag;
    int16 amp, oldamp, maxamp;
    int32 maxpos = 0;
    double sum, weightsum, maxsum;
    //double sum_bestfreq;
    double f0_inv;
    //int num_maxsum;
    float freq, newfreq, bestfreq, freq_inc;
    float minfreq, maxfreq, minfreq2, maxfreq2;
    float min_guessfreq, max_guessfreq;

    rate = sp->sample_rate;
    length = length0 = sp->data_length >> FRACTION_BITS;
    origdata = sp->data;

    length = freq_initialize_fft_arrays(sp);

    /* base frequency of the FFT */
    f0 = (float) rate / length;
    f0_inv = 1.0 / f0;

    /* get maximum amplitude */
    maxamp = -1;
    for (i = 0; i < length0; i++)
    {
	amp = abs(origdata[i]);
	if (amp >= maxamp)
	{
	    maxamp = amp;
	    maxpos = i;
	}
    }

    /* go out 2 zero crossings in both directions, starting at maxpos */
    /* find the peaks after the 2nd crossing */
    minoffset1 = 0;
    for (n = 0, oldamp = origdata[maxpos], i = maxpos - 1; i >= 0 && n < 2; i--)
    {
	amp = origdata[i];
	if ((oldamp && amp == 0) || (oldamp > 0 && amp < 0) ||
	    (oldamp < 0 && amp > 0))
	    n++;
	oldamp = amp;
    }
    minoffset1 = i;
    maxamp = labs(origdata[i]);
    while (i >= 0)
    {
	amp = origdata[i];
	if ((oldamp && amp == 0) || (oldamp > 0 && amp < 0) ||
	    (oldamp < 0 && amp > 0))
	{
	    break;
	}
	oldamp = amp;

	amp = labs(amp);
	if (amp > maxamp)
	{
	    maxamp = amp;
	    minoffset1 = i;
	}
	i--;
    }

    minoffset2 = 0;
    for (n = 0, oldamp = origdata[maxpos], i = maxpos + 1; i < length0 && n < 2; i++)
    {
	amp = origdata[i];
	if ((oldamp && amp == 0) || (oldamp > 0 && amp < 0) ||
	    (oldamp < 0 && amp > 0))
	    n++;
	oldamp = amp;
    }
    minoffset2 = i;
    maxamp = labs(origdata[i]);
    while (i < length0)
    {
	amp = origdata[i];
	if ((oldamp && amp == 0) || (oldamp > 0 && amp < 0) ||
	    (oldamp < 0 && amp > 0))
	{
	    break;
	}
	oldamp = amp;

	amp = labs(amp);
	if (amp > maxamp)
	{
	    maxamp = amp;
	    minoffset2 = i;
	}
	i++;
    }

    /* upper bound on the detected frequency */
    /* distance between the two peaks is at most 2 periods */
    minoffset = (minoffset2 - minoffset1);
    if (minoffset < 4)
	minoffset = 4;
    max_guessfreq = (float) rate / (minoffset * 0.5);
    if (max_guessfreq >= (rate >> 1)) max_guessfreq = (rate >> 1) - 1;

    /* lower bound on the detected frequency */
    maxoffset = rate / pitch_freq_lb_table[LOWEST_PITCH] + 0.5;
    if (maxoffset > (length >> 1))
	maxoffset = (length >> 1);
    min_guessfreq = (float) rate / maxoffset;

    /* perform the in place FFT */
    rdft(length, 1, floatdata, ip, w);

    /* calc the magnitudes */
    for (i = 2; i < length; i++)
    {
	mag = floatdata[i++];
	mag *= mag;
	mag += floatdata[i] * floatdata[i];
	magdata[i >> 1] = sqrt(mag);
    }

    /* find max mag */
    maxmag = 0;
    for (i = 1; i < (length >> 1); i++)
    {
	mag = magdata[i];

	pitch = fft1_bin_to_pitch[i];
	if (pitch && mag > maxmag)
	    maxmag = mag;
    }
    
    /* Apply non-linear scaling to the magnitudes
     * I don't know why this improves the pitch detection, but it does
     * The best choice of power seems to be between 1.64 - 1.68
     */
    for (i = 1; i < (length >> 1); i++)
	magdata[i] = maxmag * pow(magdata[i] / maxmag, 1.66);

    /* bin the pitches */
    for (i = 1; i < (length >> 1); i++)
    {
	mag = magdata[i];

	pitch = fft1_bin_to_pitch[i];
	pitchbins[pitch] += mag;

	if (mag > pitchmags[pitch])
	    pitchmags[pitch] = mag;
    }

    /* zero out lowest pitch, since it contains all lower frequencies too */
    pitchbins[LOWEST_PITCH] = 0;

    /* find the largest peak */
    for (i = LOWEST_PITCH + 1, maxsum = -42; i <= HIGHEST_PITCH; i++)
    {
	sum = pitchbins[i];
	if (sum > maxsum)
	{
	    maxsum = sum;
	    largest_peak = i;
	}
    }

    minpitch = assign_pitch_to_freq(min_guessfreq);
    if (minpitch > HIGHEST_PITCH) minpitch = HIGHEST_PITCH;

    /* zero out any peak below minpitch */
    for (i = LOWEST_PITCH + 1; i < minpitch; i++)
	pitchbins[i] = 0;

    /* remove all pitches below threshold */
    for (i = minpitch; i <= HIGHEST_PITCH; i++)
    {
	if (pitchbins[i] / maxsum < 0.01 && pitchmags[i] / maxmag < 0.01)
	    pitchbins[i] = 0;
    }

    /* keep local maxima */
    for (i = LOWEST_PITCH + 1; i < HIGHEST_PITCH; i++)
    {
    	double temp;

	temp = pitchbins[i];
	    
    	/* also keep significant bands to either side */
    	if (temp && pitchbins[i-1] < temp && pitchbins[i+1] < temp)
    	{
    	    new_pitchbins[i] = temp;

    	    temp *= 0.5;
    	    if (pitchbins[i-1] >= temp)
    	    	new_pitchbins[i-1] = pitchbins[i-1];
    	    if (pitchbins[i+1] >= temp)
    	    	new_pitchbins[i+1] = pitchbins[i-1];
    	}
    }
    memcpy(pitchbins, new_pitchbins, 129 * sizeof(double));

    /* find lowest and highest pitches */
    minpitch = LOWEST_PITCH;
    while (minpitch < HIGHEST_PITCH && !pitchbins[minpitch])
    	minpitch++;
    maxpitch = HIGHEST_PITCH;
    while (maxpitch > LOWEST_PITCH && !pitchbins[maxpitch])
    	maxpitch--;

    /* uh oh, no pitches left...
     * best guess is middle C
     * return 260 Hz, since exactly 260 Hz is never returned except on error
     * this should only occur on blank/silent samples
     */
    if (maxpitch < minpitch)
    {
    	free(floatdata);
    	return 260.0;
    }

    /* pitch assignment bounds based on zero crossings and pitches kept */
    if (pitch_freq_lb_table[minpitch] > min_guessfreq)
    	min_guessfreq = pitch_freq_lb_table[minpitch];
    if (pitch_freq_ub_table[maxpitch] < max_guessfreq)
    	max_guessfreq = pitch_freq_ub_table[maxpitch];

    minfreq = pitch_freq_lb_table[minpitch];
    if (minfreq >= (rate >> 1)) minfreq = (rate >> 1) - 1;
    
    maxfreq = pitch_freq_ub_table[maxpitch];
    if (maxfreq >= (rate >> 1)) maxfreq = (rate >> 1) - 1;

    minbin = minfreq / f0;
    if (!minbin)
	minbin = 1;
    maxbin = ceil(maxfreq / f0);
    if (maxbin >= (length >> 1))
    	maxbin = (length >> 1) - 1;

    /* filter out all "noise" from magnitude array */
    for (i = minbin, n = 0; i <= maxbin; i++)
    {
	pitch = fft1_bin_to_pitch[i];
	if (pitchbins[pitch])
	{
	    prunemagdata[i] = magdata[i];
	    n++;
	}
    }

    /* whoa!, there aren't any strong peaks at all !!! bomb early
     * best guess is middle C
     * return 260 Hz, since exactly 260 Hz is never returned except on error
     * this should only occur on blank/silent samples
     */
    if (!n)
    {
    	free(floatdata);
	return 260.0;
    }

    memset(new_pitchbins, 0, 129 * sizeof(double));

    maxsum = -1;
    minpitch = assign_pitch_to_freq(min_guessfreq);
    maxpitch = assign_pitch_to_freq(max_guessfreq);
    maxpitch2 = assign_pitch_to_freq(max_guessfreq) + 9;
    if (maxpitch2 > HIGHEST_PITCH) maxpitch2 = HIGHEST_PITCH;

    /* initial guess is first local maximum */
    bestfreq = pitch_freq_table[minpitch];
    if (minpitch < HIGHEST_PITCH &&
    	pitchbins[minpitch+1] > pitchbins[minpitch])
    	    bestfreq = pitch_freq_table[minpitch+1];

    /* find best fundamental */
    for (i = minpitch; i <= maxpitch2; i++)
    {
	if (!pitchbins[i])
	    continue;

    	minfreq2 = pitch_freq_lb_table[i];
    	maxfreq2 = pitch_freq_ub_table[i];
    	freq_inc = (maxfreq2 - minfreq2) * 0.1;
    	if (minfreq2 >= (rate >> 1)) minfreq2 = (rate >> 1) - 1;
    	if (maxfreq2 >= (rate >> 1)) maxfreq2 = (rate >> 1) - 1;

	/* look for harmonics */
	for (freq = minfreq2; freq <= maxfreq2; freq += freq_inc)
	{
	    //double ratio;
	
    	    n = total = 0;
    	    sum = weightsum = 0;

	    for (j = 1; j <= 32 && (newfreq = j*freq) <= maxfreq; j++)
    	    {
    	    	pitch = assign_pitch_to_freq(newfreq);

    	    	if (pitchbins[pitch])
    	    	{
    	    	    sum += pitchbins[pitch];
    	    	    n++;
    	    	    total = j;
    	  	}
    	    }

	    /* only pitches with good harmonics are assignment candidates */
	    if (n > 1)
	    {
	    	double ratio;
	    	
	    	ratio = (double) n / total;
	    	if (ratio >= 0.333333)
	    	{
	    	    weightsum = ratio * sum;
	    	    pitch = assign_pitch_to_freq(freq);

		    /* use only these pitches for chord detection */
	    	    if (pitch <= HIGHEST_PITCH && pitchbins[pitch])
	    	    	new_pitchbins[pitch] = weightsum;

		    if (pitch > maxpitch)
		    	continue;

    	    	    if (n < 2 || weightsum > maxsum)
    	    	    {
    	    	    	maxsum = weightsum;
    	    	    	bestfreq = freq;
    	    	    }
    	    	}
    	    }
    	}
    }

    bestpitch = assign_pitch_to_freq(bestfreq);

    /* assign chords */
    if ((pitch = assign_chord(new_pitchbins, chord,
    	bestpitch - 9, maxpitch2, bestpitch)) >= 0)
    	    bestpitch = pitch;

    bestfreq = pitch_freq_table[bestpitch];

    /* tune based on the fundamental and harmonics up to +5 octaves */
    sum = weightsum = 0;
    for (i = 1; i <= 32 && (freq = i*bestfreq) <= maxfreq; i++)
    {
	double tune;

	minfreq2 = pitch_freq_lb_table[bestpitch];
	maxfreq2 = pitch_freq_ub_table[bestpitch];

	minbin = minfreq2 * f0_inv;
	if (!minbin) minbin = 1;
	maxbin = ceil(maxfreq2 * f0_inv);
	if (maxbin >= (length>>1))
	    maxbin = (length>>1) - 1;

	for (bin = minbin; bin <= maxbin; bin++)
	{
	    tune = -36.37631656 + 17.31234049 * log(bin*f0) - bestpitch;
	    sum += magdata[bin];
	    weightsum += magdata[bin] * tune;
	}
    }

    bestfreq = 13.75 * exp(((bestpitch + weightsum / sum) - 9) /
    	       12 * log(2));

    /* Since we are using exactly 260 Hz as an error code, fudge the freq
     * on the extremely unlikely chance that the detected pitch is exactly
     * 260 Hz.
     */
    if (bestfreq == 260.0)
    	bestfreq += 1E-5;

    free(floatdata);

    return bestfreq;
}



int assign_pitch_to_freq(float freq)
{

    int pitch;

    /* round to nearest integer using: ceil(fraction - 0.5) */
    /* -0.5 is already added into the first constant below */
    pitch = ceil(-36.87631656f + 17.31234049f * log(freq));

    /* min and max pitches */
    if (pitch < LOWEST_PITCH) pitch = LOWEST_PITCH;
    else if (pitch > HIGHEST_PITCH) pitch = HIGHEST_PITCH;

    return pitch;
}