1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
|
======================================================================
MIDI Tuning Standard summary
======================================================================
Besides GS/XG scale tuning which adjusts the pitch of 12 tones in an
octave individually, TiMidity++ supports MIDI Tuning Standard in
Universal SysEx. MIDI Tuning Standard has the following advantages
compared with GS/XG scale tuning:
- Support for microtonal sound other than 12 tones
- The pitch can be adjusted in 1/100 cent or less accuracy
- Temperaments can be rationally setup based on the tonality
For details, please refer to the recommended practice.
(1) Bulk Tuning Dump Request (Non Real-Time)
----------------------------------------------------------------------
F0 7E <device ID> 08 00 tt F7
F0 7E Universal Non-Real Time SysEx header
<device ID> ID of target device (7F = all devices)
08 sub-ID#1 = "MIDI Tuning Standard"
00 sub-ID#2 = "bulk tuning dump request (Non Real-Time)"
tt tuning program number (0 - 127)
F7 EOX
----------------------------------------------------------------------
(2) Bulk Tuning Dump (Non Real-Time)
----------------------------------------------------------------------
F0 7E <device ID> 08 01 tt <tuning name> [xx yy zz] ... chksum F7
F0 7E Universal Non-Real Time SysEx header
<device ID> ID of target device (7F = all devices)
08 sub-ID#1 = "MIDI Tuning Standard"
01 sub-ID#2 = "bulk tuning dump (Non Real-Time)"
tt tuning program number (0 - 127)
<tuning name> 16 ASCII characters
[xx yy zz] frequency data for one note (repeated 128 times)
chksum checksum (XOR of all bytes excluding F0, F7, and chksum)
F7 EOX
----------------------------------------------------------------------
(3) Single Note Tuning Change (Real-Time)
----------------------------------------------------------------------
F0 7F <device ID> 08 02 tt ll [kk xx yy zz] F7
F0 7F Universal Real Time SysEx header
<device ID> ID of target device (7F = all devices)
08 sub-ID#1 = "MIDI Tuning Standard"
02 sub-ID#2 = "single note tuning change (Real-Time)"
tt tuning program number (0 - 127)
ll number of changes (1 change = 1 set of [kk xx yy zz])
[kk MIDI key number
xx yy zz] frequency data for that key (repeated 'll' number of times)
F7 EOX
----------------------------------------------------------------------
(4) Bulk Tuning Dump Request (Bank) (Non Real-Time)
----------------------------------------------------------------------
F0 7E <device ID> 08 03 bb tt F7
F0 7E Universal Non-Real Time SysEx header
<device ID> ID of target device (7F = all devices)
08 sub-ID#1 = "MIDI tuning standard"
03 sub-ID#2 = "bulk tuning dump request (Bank) (Non Real-Time)"
bb tuning bank number (0 - 127)
(described as 1-128 in MIDI Tuning Specification)
tt tuning program number (0 - 127)
F7 EOX
----------------------------------------------------------------------
(5) Key-Based Tuning Dump (Non Real-Time)
----------------------------------------------------------------------
F0 7E <device ID> 08 04 bb tt <tuning name> [xx yy zz] ... chksum F7
F0 7E Universal Non-Real Time SysEx header
<device ID> ID of target device (7F = all devices)
08 sub-ID#1 = "MIDI tuning standard"
04 sub-ID#2 = "key-based tuning dump (Non Real-Time)"
bb tuning bank number (0 - 127)
(described as 1-128 in MIDI Tuning Specification)
tt tuning program number (0 - 127)
<tuning name> 16 ASCII characters
[xx yy zz] frequency data for one note (repeated 128 times)
chksum checksum (XOR of all bytes excluding F0, F7, and chksum)
F7 EOX
----------------------------------------------------------------------
(6) Scale/Octave Tuning Dump 1-Byte Form (Non Real-Time)
----------------------------------------------------------------------
F0 7E <device ID> 08 05 bb tt <tuning name> [xx] ... chksum F7
F0 7E Universal Non-Real Time SysEx header
<device ID> ID of target device (7F = all devices)
08 sub-ID#1 = "MIDI tuning standard"
05 sub-ID#2 = "scale/octave tuning dump 1-byte form
(Non Real-Time)"
bb tuning bank number (0 - 127)
(described as 1-128 in MIDI Tuning Specification)
tt tuning program number (0 - 127)
<tuning name> 16 ASCII characters
[xx] frequency data for C,C#,... B (12 bytes total)
00H means -64 Cent
40H means +/- 0 Cent
7FH means +63 Cent
chksum checksum (XOR of all bytes excluding F0, F7, and chksum)
F7 EOX
----------------------------------------------------------------------
(7) Scale/Octave Tuning Dump 2-Byte Form (Non Real-Time)
----------------------------------------------------------------------
F0 7E <device ID> 08 06 bb tt <tuning name> [xx yy] ... chksum F7
F0 7E Universal Non-Real Time SysEx header
<device ID> ID of target device (7F = all devices)
08 sub-ID#1 = "MIDI tuning standard"
06 sub-ID#2 = "scale/octave tuning dump 2-byte form
(Non Real-Time)"
bb tuning bank number (0 - 127)
(described as 1-128 in MIDI Tuning Specification)
tt tuning program number (0 - 127)
<tuning name> 16 ASCII characters
[xx yy] frequency data for C,C#,... B (24 bytes total)
00H 00H means -100 cents (8,192 steps of .012207 cents)
40H 00H means 0 cents (equal temperament)
7FH 7FH means +100 cents (8,191 steps of .012207 cents)
chksum checksum (XOR of all bytes excluding F0, F7, and chksum)
F7 EOX
----------------------------------------------------------------------
(8) Single Note Tuning Change (Bank) (Real-Time)
----------------------------------------------------------------------
F0 7F <device ID> 08 07 bb tt ll [kk xx yy zz] ... F7
F0 7F Universal Real Time SysEx header
<device ID> ID of target device (7F = all devices)
08 sub-ID#1 = "MIDI tuning standard"
07 sub-ID#2 = "single note tuning change (Bank) (Real-Time)"
bb tuning bank number (0 - 127)
(described as 1-128 in MIDI Tuning Specification)
tt tuning program number (0 - 127)
ll number of changes (1 change = 1 set of [kk xx yy zz])
[kk MIDI key number
xx yy zz] frequency data for that key (repeated 'll' number of times)
F7 EOX
----------------------------------------------------------------------
(9) Single Note Tuning Change (Bank) (Non Real-Time)
----------------------------------------------------------------------
F0 7E <device ID> 08 07 bb tt ll [kk xx yy zz] ... F7
F0 7E Universal Non-Real Time SysEx header
<device ID> ID of target device (7F = all devices)
08 sub-ID#1 = "MIDI tuning standard"
07 sub-ID#2 = "single note tuning change (Bank) (Non Real-Time)"
bb tuning bank number (0 - 127)
(described as 1-128 in MIDI Tuning Specification)
tt tuning program number (0 - 127)
ll number of changes (1 change = 1 set of [kk xx yy zz])
[kk MIDI key number
xx yy zz] frequency data for that key (repeated 'll'number of times)
F7 EOX
----------------------------------------------------------------------
(10) Scale/Octave Tuning 1-Byte Form (Real-Time)
----------------------------------------------------------------------
F0 7F <device ID> 08 08 ff gg hh [ss] ... F7
F0 7F Universal Real-Time SysEx header
<device ID> ID of target device (7F = all devices)
08 sub-ID#1 = "MIDI Tuning Standard"
08 sub-ID#2 = "scale/octave tuning 1-byte form (Real-Time)"
ff channel/options byte 1
bits 0 to 1 = channel 15 to 16
bits 2 to 6 = reserved for future expansion
gg channel byte 2 - bits 0 to 6 = channel 8 to 14
hh channel byte 3 - bits 0 to 6 = channel 1 to 7
[ss] 12 byte tuning offset of 12 semitones from C to B
00H means -64 cents
40H means 0 cents (equal temperament)
7FH means +63 cents
F7 EOX
----------------------------------------------------------------------
(11) Scale/Octave Tuning 1-Byte Form (Non Real-Time)
----------------------------------------------------------------------
F0 7E <device ID> 08 08 ff gg hh [ss] ... F7
F0 7E Universal Non Real-Time SysEx header
<device ID> ID of target device (7F = all devices)
08 sub-ID#1 = "MIDI Tuning Standard"
08 sub-ID#2 = "scale/octave tuning 1-byte form (Non Real-Time)"
ff channel/options byte 1
bits 0 to 1 = channel 15 to 16
bits 2 to 6 = reserved for future expansion
gg channel byte 2 - bits 0 to 6 = channel 8 to 14
hh channel byte 3 - bits 0 to 6 = channel 1 to 7
[ss] 12 byte tuning offset of 12 semitones from C to B
00H means -64 cents
40H means 0 cents (equal temperament)
7FH means +63 cents
F7 EOX
----------------------------------------------------------------------
(12) Scale/Octave Tuning 2-Byte Form (Real-Time)
----------------------------------------------------------------------
F0 7F <device ID> 08 09 ff gg hh [ss tt] ... F7
F0 7F Universal Real-Time SysEx header
<device ID> ID of target device (7F = all devices)
08 sub-ID#1 = "MIDI Tuning Standard"
09 sub-ID#2 = "scale/octave tuning 2-byte form (Real-Time)"
ff channel/options byte 1
bits 0 to 1 = channel 15 to 16
bits 2 to 6 = reserved for future expansion
gg channel byte 2 - bits 0 to 6 = channel 8 to 14
hh channel byte 3 - bits 0 to 6 = channel 1 to 7
[ss tt] 24 byte tuning offset of 2 bytes per semitone from C to B
00H 00H means -100 cents (8,192 steps of .012207 cents)
40H 00H means 0 cents (equal temperament)
7FH 7FH means +100 cents (8,191 steps of .012207 cents)
F7 EOX
----------------------------------------------------------------------
(13) Scale/Octave Tuning 2-Byte Form (Non Real-Time)
----------------------------------------------------------------------
F0 7E <device ID> 08 09 ff gg hh [ss tt] ... F7
F0 7E Universal Non Real Time SysEx header
<device ID> ID of target device (7F = all devices)
08 sub-ID#1 = "MIDI Tuning Standard"
09 sub-ID#2 = "scale/octave tuning 2-byte form (Non Real-Time)"
ff channel/options byte 1
bits 0 to 1 = channel 15 to 16
bits 2 to 6 = reserved for future expansion
gg channel byte 2 - bits 0 to 6 = channel 8 to 14
hh channel byte 3 - bits 0 to 6 = channel 1 to 7
[ss tt] 24 byte tuning offset of 2 bytes per semitone from C to B
00H 00H means -100 cents (8,192 steps of .012207 cents)
40H 00H means 0 cents (equal temperament)
7FH 7FH means +100 cents (8,191 steps of .012207 cents)
F7 EOX
----------------------------------------------------------------------
(14) Temperament Tonality Control Tuning (Real-Time)
----------------------------------------------------------------------
F0 7F <device ID> 08 0A sf mi F7
F0 7F Universal Real-Time SysEx header
<device ID> ID of target device (7F = all devices)
08 sub-ID#1 = "MIDI Tuning Standard"
0A sub-ID#2 = "temperament tonality control tuning
(Real-Time)"
sf number of sharp/flat (1 byte)
39H means 7 flats
3FH means 1 flat
40H means key of C
41H means 1 sharp
47H means 7 sharps
mi major/minor (1 byte)
00H means major key
01H means minor key
02H means passing major key
03H means passing minor key
F7 EOX
----------------------------------------------------------------------
(15) Temperament Tonality Control Tuning (Non Real-Time)
----------------------------------------------------------------------
F0 7E <device ID> 08 0A sf mi F7
F0 7E Universal Non Real-Time SysEx header
<device ID> ID of target device (7F = all devices)
08 sub-ID#1 = "MIDI Tuning Standard"
0A sub-ID#2 = "temperament tonality control tuning
(Non Real-Time)"
sf number of sharp/flat (1 byte)
39H means 7 flats
3FH means 1 flat
40H means key of C
41H means 1 sharp
47H means 7 sharps
mi major/minor (1 byte)
00H means major key
01H means minor key
02H means passing major key
03H means passing minor key
F7 EOX
----------------------------------------------------------------------
(16) Temperament Type Control Tuning (Real-Time)
----------------------------------------------------------------------
F0 7F <device ID> 08 0B ff gg hh tt F7
F0 7F Universal Real-Time SysEx header
<device ID> ID of target device (7F = all devices)
08 sub-ID#1 = "MIDI Tuning Standard"
0B sub-ID#2 = "temperament type control tuning (Real-Time)"
ff channel/options byte 1
bits 0 to 1 = channel 15 to 16
bit 2 = port A/B
bits 3 to 6 = reserved for future expansion
gg channel byte 2 - bits 0 to 6 = channel 8 to 14
hh channel byte 3 - bits 0 to 6 = channel 1 to 7
tt temperament type (1 byte)
00H means equal temperament
01H means Pythagoras tuning
02H means mean-tone tuning
03H means pure intonation
40H means user-defined temperament #0
41H means user-defined temperament #1
42H means user-defined temperament #2
43H means user-defined temperament #3
F7 EOX
----------------------------------------------------------------------
(17) Temperament Type Control Tuning (Non Real-Time)
----------------------------------------------------------------------
F0 7E <device ID> 08 0B ff gg hh tt F7
F0 7E Universal Non Real Time SysEx header
<device ID> ID of target device (7F = all devices)
08 sub-ID#1 = "MIDI Tuning Standard"
0B sub-ID#2 = "temperament type control tuning (Non Real-Time)"
ff channel/options byte 1
bits 0 to 1 = channel 15 to 16
bit 2 = port A/B
bits 3 to 6 = reserved for future expansion
gg channel byte 2 - bits 0 to 6 = channel 8 to 14
hh channel byte 3 - bits 0 to 6 = channel 1 to 7
tt temperament type (1 byte)
00H means equal temperament
01H means Pythagoras tuning
02H means mean-tone tuning
03H means pure intonation
40H means user-defined temperament #0
41H means user-defined temperament #1
42H means user-defined temperament #2
43H means user-defined temperament #3
F7 EOX
----------------------------------------------------------------------
(18) User-defined Temperament Entry (Non Real-Time)
----------------------------------------------------------------------
F0 7E <device ID> 08 0C tt <temper name>
ll [fh fl bh bl aa bb cc dd ee ff] ... F7
F0 7E Universal Non Real Time SysEx header
<device ID> ID of target device (7F = all devices)
08 sub-ID#1 = "MIDI Tuning Standard"
0C sub-ID#2 = "user-defined temperament entry (Non Real-Time)"
tt temperament program number (0 - 63)
<temper name> 16 ASCII characters
ll number of formula (1 formula =
1 set of [fh fl bh bl aa bb cc dd ee ff])
[fh applying pitch bit mask byte 1
bits 0 to 3 = circle of fifth forward 8 to 11
bits 4 to 5 = reserved for future expansion
bit 6 = major flag (reversal)
fl applying pitch bit mask byte 2
bits 0 to 6 = circle of fifth forward 1 to 7
bh applying pitch bit mask byte 3
bits 0 to 3 = circle of fifth backward 8 to 11
bits 4 to 5 = reserved for future expansion
bit 6 = minor flag (reversal)
bl applying pitch bit mask byte 4
bits 0 to 6 = circle of fifth backward 1 to 7
aa bb fraction (aa/bb)
cc dd ee ff] power ((cc/dd)^(ee/ff)) (repeated 'll' number of times)
F7 EOX
----------------------------------------------------------------------
======================================================================
The major/minor in the temperament tonality
======================================================================
The basic chords used in general music in C major are not only C, G, F
but also Am, Em, Dm which appear frequently. There may also be Cm,
Gm, Fm, A, E, D, and so on. Since these chords are not supported only
in pure intonation (C major), players need to change temperaments
according to progress of music.
To solve the issue, TiMidity++ prepares
(1) pure intonation (C major)
based on the pitch of C in Pythagoras tuning (C major)
(2) pure intonation (A minor)
based on the pitch of A in Pythagoras tuning (A minor)
(3) pure intonation (passing C major)
based on the pitch of A in Pythagoras tuning (C major)
(4) pure intonation (passing A minor)
based on the pitch of C in Pythagoras tuning (A minor)
I will explain more precisely. The following table gives the lattice
(Cartesian model) of the scale system:
-----------------------------------------------------------------------------
D-- A-- E-- B-- F#-- C#-- G#-- D#-- A#-- E#-- B#-- F##-- C##--
Bb- F- C- G- D- A- E- B- F#- C#- G#- D#- A#-
Gb Db Ab Eb Bb F C G D A E B F#
Ebb+ Bbb+ Fb+ Cb+ Gb+ Db+ Ab+ Eb+ Bb+ F+ C+ G+ D+
Cbb++ Gbb++ Dbb++ Abb++ Ebb++ Bbb++ Fb++ Cb++ Gb++ Db++ Ab++ Eb++ Bb++
-----------------------------------------------------------------------------
The notation "ABCDEFG" is according to Pythagoras tuning. The
notation "+", "-", "++" and "--" mean 1sc higher, 1sc lower, 2sc
higher and 2sc lower respectively.
A certain pure intonation is given as 12 sounds arranged by the
rectangle of 4x3 from the lattice. For example, C tuning, A tuning,
A- tuning and C+ tuning are given as following tables respectively:
[C tuning (C major)]
----------------------
A- E- B- F#-
F C G D
Db+ Ab+ Eb+ Bb+
----------------------
[A tuning (A minor)]
----------------------
F#- C#- G#- D#-
D A E B
Bb+ F+ C+ G+
----------------------
[C+ tuning (passing C major)]
----------------------
A E B F#
F+ C+ G+ D+
Db++ Ab++ Eb++ Bb++
----------------------
[A- tuning (passing A minor)]
----------------------
F#-- C#-- G#-- D#--
D- A- E- B-
Bb F C G
----------------------
I think it is nice to select the tuning combination whose pitch of
parallel key is slightly lower for major music, and slightly higher
for minor music.
======================================================================
Preset temperament of Temperament Type Control Tuning
======================================================================
First, Pythagoras tuning (major) chromatic scale is expressed by the
following recurrence relations. Here, the index [] is a offset of the
tonic. The operation results are surely settled between 1 and 2, so
they will be made into half or double if necessary.
[Pythagoras tuning (major) chromatic scale]
pytha_maj[ 0] = 1 # C 1
pytha_maj[ 7] = pytha_maj[ 0] * 3/2 # G 3/2
pytha_maj[ 2] = pytha_maj[ 7] * 3/2 # D 9/8
pytha_maj[ 9] = pytha_maj[ 2] * 3/2 # A 27/16
pytha_maj[ 4] = pytha_maj[ 9] * 3/2 # E 81/64
pytha_maj[11] = pytha_maj[ 4] * 3/2 # B 243/128
pytha_maj[ 6] = pytha_maj[11] * 3/2 # F# 729/512
--
pytha_maj[ 5] = pytha_maj[ 0] * 2/3 # F 4/3
pytha_maj[10] = pytha_maj[ 5] * 2/3 # Bb 16/9
pytha_maj[ 3] = pytha_maj[10] * 2/3 # Eb 32/27
pytha_maj[ 8] = pytha_maj[ 3] * 2/3 # Ab 128/81
pytha_maj[ 1] = pytha_maj[ 8] * 2/3 # Db 256/243
On the other hand, pure intonation (major) chromatic scale can be
expressed by the following recurrence relations. Here, sc means a
syntonic comma (81/80).
[pure intonation (major) chromatic scale]
pure_maj[ 0] = 1 # C 1
pure_maj[ 7] = pure_maj[ 0] * 3/2 # G 3/2
pure_maj[ 2] = pure_maj[ 7] * 3/2 # D 9/8
pure_maj[ 9] = pure_maj[ 2] * 3/2 / sc # A 5/3
pure_maj[ 4] = pure_maj[ 9] * 3/2 # E 5/4
pure_maj[11] = pure_maj[ 4] * 3/2 # B 15/8
pure_maj[ 6] = pure_maj[11] * 3/2 # F# 45/32
--
pure_maj[ 5] = pure_maj[ 0] * 2/3 # F 4/3
pure_maj[10] = pure_maj[ 5] * 2/3 * sc # Bb 9/5
pure_maj[ 3] = pure_maj[10] * 2/3 # Eb 6/5
pure_maj[ 8] = pure_maj[ 3] * 2/3 # Ab 8/5
pure_maj[ 1] = pure_maj[ 8] * 2/3 # Db 16/15
It can be understood that pure intonation is similar to Pythagoras
tuning fundamentally except descending with 1sc at A and rising with
1sc at B flat while going up and down respectively from the tonic in
the circle of fifths.
Similarly, expressed Pythagoras tuning and pure intonation (minor)
chromatic scale by the following recurrence relations. Although the
fractions written to right-hand side is terrible values, the
recurrence relations themselves are very simple.
[Pythagoras tuning (minor) chromatic scale]
pytha_min[ 0] = 1 # C 1
pytha_min[ 7] = pytha_min[ 0] * 3/2 # G 3/2
pytha_min[ 2] = pytha_min[ 7] * 3/2 # D 9/8
pytha_min[ 9] = pytha_min[ 2] * 3/2 # A 27/16
pytha_min[ 4] = pytha_min[ 9] * 3/2 # E 81/64
pytha_min[11] = pytha_min[ 4] * 3/2 # B 243/128
pytha_min[ 6] = pytha_min[11] * 3/2 # F# 729/512
pytha_min[ 1] = pytha_min[ 6] * 3/2 # C# 2187/2048
pytha_min[ 8] = pytha_min[ 1] * 3/2 # G# 6561/4096
pytha_min[ 3] = pytha_min[ 8] * 3/2 # D# 19683/16384
--
pytha_min[ 5] = pytha_min[ 0] * 2/3 # F 4/3
pytha_min[10] = pytha_min[ 5] * 2/3 # Bb 16/9
[pure intonation (minor) chromatic scale]
pure_min[ 0] = 1 * sc # C 1 * sc
pure_min[ 7] = pure_min[ 0] * 3/2 # G 3/2 * sc
pure_min[ 2] = pure_min[ 7] * 3/2 / sc # D 10/9 * sc
pure_min[ 9] = pure_min[ 2] * 3/2 # A 5/3 * sc
pure_min[ 4] = pure_min[ 9] * 3/2 # E 5/4 * sc
pure_min[11] = pure_min[ 4] * 3/2 # B 15/8 * sc
pure_min[ 6] = pure_min[11] * 3/2 / sc # F# 25/18 * sc
pure_min[ 1] = pure_min[ 6] * 3/2 # C# 25/24 * sc
pure_min[ 8] = pure_min[ 1] * 3/2 # G# 25/16 * sc
pure_min[ 3] = pure_min[ 8] * 3/2 # D# 75/64 * sc
--
pure_min[ 5] = pure_min[ 0] * 2/3 # F 4/3 * sc
pure_min[10] = pure_min[ 5] * 2/3 # Bb 16/9 * sc
The differences from the major tuning are that the boundary of
Pythagoras tuning goes up three positions, that the positions of
descending with syntonic comma are changed, and that pure intonation
is adjusted 1sc higher so that melodic parts' tonic (Pythagoras
tuning) and harmonic parts' tonic (pure intonation) are overlapped.
By the way, mean-tone tuning is also prepared besides Pythagoras
tuning and pure intonation as preset temperament of TiMidity++. While
mean-tone tuning (major) is based on the general one whose major
thirds are pure, mean-tone tuning (minor) is based on Salinas tuning
whose minor thirds are pure. Both mean-tone tuning (major) chromatic
scale and mean-tone tuning (minor) chromatic scale can be expressed by
the following recurrence relations.
[mean-tone tuning (major) chromatic scale]
mt_maj[ 0] = 1 # C 1
mt_maj[ 7] = mt_maj[ 0] * 5^(1/4) # G 5^(1/4)
mt_maj[ 2] = mt_maj[ 7] * 5^(1/4) # D 5^(1/2) / 2
mt_maj[ 9] = mt_maj[ 2] * 5^(1/4) # A 5^(3/4) / 2
mt_maj[ 4] = mt_maj[ 9] * 5^(1/4) # E 5/4
mt_maj[11] = mt_maj[ 4] * 5^(1/4) # B 5^(5/4) / 4
mt_maj[ 6] = mt_maj[11] * 5^(1/4) # F# 5^(3/2) / 8
--
mt_maj[ 5] = mt_maj[ 0] / 5^(1/4) # F 2 / 5^(1/4)
mt_maj[10] = mt_maj[ 5] / 5^(1/4) # Bb 4 / 5^(1/2)
mt_maj[ 3] = mt_maj[10] / 5^(1/4) # Eb 4 / 5^(3/4)
mt_maj[ 8] = mt_maj[ 3] / 5^(1/4) # Ab 8/5
mt_maj[ 1] = mt_maj[ 8] / 5^(1/4) # Db 8 / 5^(5/4)
[mean-tone tuning (minor) chromatic scale]
mt_min[ 0] = 1 * sc # C 1 * sc
mt_min[ 7] = mt_min[ 0] * (10/3)^(1/3) # G (10/3)^(1/3) * sc
mt_min[ 2] = mt_min[ 7] * (10/3)^(1/3) # D (10/3)^(2/3) / 2 * sc
mt_min[ 9] = mt_min[ 2] * (10/3)^(1/3) # A 5/3 * sc
mt_min[ 4] = mt_min[ 9] * (10/3)^(1/3) # E (10/3)^(4/3) / 4 * sc
mt_min[11] = mt_min[ 4] * (10/3)^(1/3) # B (10/3)^(5/3) / 4 * sc
mt_min[ 6] = mt_min[11] * (10/3)^(1/3) # F# 25/18 * sc
mt_min[ 1] = mt_min[ 6] * (10/3)^(1/3) # C# (10/3)^(7/3) / 16 * sc
mt_min[ 8] = mt_min[ 1] * (10/3)^(1/3) # G# (10/3)^(8/3) / 16 * sc
mt_min[ 3] = mt_min[ 8] * (10/3)^(1/3) # D# 125/108 * sc
--
mt_min[ 5] = mt_min[ 0] / (10/3)^(1/3) # F 2 / (10/3)^(1/3) * sc
mt_min[10] = mt_min[ 5] / (10/3)^(1/3) # Bb 4 / (10/3)^(2/3) * sc
The point that the boundary of mean-tone tuning goes up three
positions, and that mean-tone tuning is adjusted 1sc higher, are the
same situation as Pythagoras tuning and pure intonation.
Now, I think that mean-tone tuning could use for a harmony-melody
because of the characteristic that is more harmony-like than
Pythagoras tuning, and a scale is not uneven like pure intonation.
======================================================================
User-defined temperament entry
======================================================================
The function of user-defined temperament entry (experimental) is
implemented in TiMidity++. This corresponds to (18) of MIDI Tuning
Standard summary (see the top of this document). For example, it can
generate various temperaments by the following SysEx's.
[equal temperament]
f0 7e 00 08 0c 00 ; temper prog number
65 71 75 61 6c 00 00 00 00 00 00 00 00 00 00 00 ; "equal"
01 ; number of formula
0f 7f 00 00 01 01 02 01 07 0c ; (both) 2^(7/12)
f7
[Pythagoras tuning]
f0 7e 00 08 0c 01 ; temper prog number
50 79 74 68 61 67 6f 72 61 73 00 00 00 00 00 00 ; "Pythagoras"
02 ; number of formula
00 3f 40 1f 03 02 01 01 00 01 ; (maj) 3/2
43 7f 00 03 03 02 01 01 00 01 ; (min) 3/2
f7
[mean-tone tuning]
f0 7e 00 08 0c 02 ; temper prog number
6d 65 61 6e 2d 74 6f 6e 65 00 00 00 00 00 00 00 ; "mean-tone"
02 ; number of formula
00 3f 40 1f 01 01 05 01 01 04 ; (maj) 5^(1/4)
43 7f 00 03 01 01 0a 03 01 03 ; (min) (10/3)^(1/3)
f7
[pure intonation]
f0 7e 00 08 0c 03 ; temper prog number
70 75 72 65 20 69 6e 74 6f 6e 61 74 69 6f 6e 00 ; "pure intonation"
04 ; number of formula
00 3f 40 1f 03 02 01 01 00 01 ; (maj) 3/2
00 04 40 02 05 01 02 03 04 01 ; (maj) 5*(2/3)^4
43 7f 00 03 03 02 01 01 00 01 ; (min) 3/2
40 22 00 00 05 01 02 03 04 01 ; (min) 5*(2/3)^4
f7
[Kirnberger-3]
f0 7e 00 08 0c 00 ; temper prog number
4b 69 72 6e 62 65 72 67 65 72 2d 33 00 00 00 00 ; "Kirnberger-3"
02 ; number of formula
00 0f 00 00 01 01 05 01 01 04 ; (both) 5^(1/4)
00 30 00 1f 03 02 01 01 00 01 ; (both) 3/2
f7
[Hirashima temperament]
f0 7e 00 08 0c 01 ; temper prog number
48 69 72 61 73 68 69 6d 61 00 00 00 00 00 00 00 ; "Hirashima"
02 ; number of formula
00 1f 00 03 01 01 05 01 01 04 ; (both) 5^(1/4)
00 00 00 3c 03 02 01 01 00 01 ; (both) 3/2
f7
[Werckmeister-3]
f0 7e 00 08 0c 02 ; temper prog number
57 65 72 63 6b 6d 65 69 73 74 65 72 2d 33 00 00 ; "Werckmeister-3"
02 ; number of formula
00 07 00 00 01 09 02 01 0f 04 ; (both) 2^(15/4)/9
00 18 00 3f 03 02 01 01 00 01 ; (both) 3/2
f7
[well-temperament]
f0 7e 00 08 0c 03 ; temper prog number
77 65 6c 6c 2d 74 65 6d 70 65 72 00 00 00 00 00 ; "well-temper"
02 ; number of formula
00 07 00 00 01 09 02 01 0f 04 ; (both) 2^(15/4)/9
00 00 01 7f 03 02 01 01 00 01 ; (both) 3/2
f7
----
TAMUKI Shoichi <tamuki@linet.gr.jp>
|