1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
/*
* Copyright (c) 1980 Regents of the University of California.
* All rights reserved. The Berkeley software License Agreement
* specifies the terms and conditions for redistribution.
*/
#ifndef lint
static char sccsid[] = "@(#)qsort.c 5.1 (Berkeley) 6/5/85";
#endif /* not lint */
/*
* qsort.c:
* Our own version of the system qsort routine which is faster by an average
* of 25%, with lows and highs of 10% and 50%.
* The THRESHold below is the insertion sort threshold, and has been adjusted
* for records of size 48 bytes.
* The MTHREShold is where we stop finding a better median.
*/
#define THRESH 4 /* threshold for insertion */
#define MTHRESH 6 /* threshold for median */
static int (*qcmp)(); /* the comparison routine */
static int qsz; /* size of each record */
static int thresh; /* THRESHold in chars */
static int mthresh; /* MTHRESHold in chars */
static void qst(char *base, char *max);
/*
* my_qsort:
* First, set up some global parameters for qst to share. Then, quicksort
* with qst(), and then a cleanup insertion sort ourselves. Sound simple?
* It's not...
*/
void my_qsort(char *base, int n, int size, int (*compar)())
{
register char c, *i, *j, *lo, *hi;
char *min, *max;
if (n <= 1)
return;
qsz = size;
qcmp = compar;
thresh = qsz * THRESH;
mthresh = qsz * MTHRESH;
max = base + n * qsz;
if (n >= THRESH) {
qst(base, max);
hi = base + thresh;
} else {
hi = max;
}
/*
* First put smallest element, which must be in the first THRESH, in
* the first position as a sentinel. This is done just by searching
* the first THRESH elements (or the first n if n < THRESH), finding
* the min, and swapping it into the first position.
*/
for (j = lo = base; (lo += qsz) < hi; )
if ((*qcmp)(j, lo) > 0)
j = lo;
if (j != base) {
/* swap j into place */
for (i = base, hi = base + qsz; i < hi; ) {
c = *j;
*j++ = *i;
*i++ = c;
}
}
/*
* With our sentinel in place, we now run the following hyper-fast
* insertion sort. For each remaining element, min, from [1] to [n-1],
* set hi to the index of the element AFTER which this one goes.
* Then, do the standard insertion sort shift on a character at a time
* basis for each element in the frob.
*/
for (min = base; (hi = min += qsz) < max; ) {
while ((*qcmp)(hi -= qsz, min) > 0)
/* void */;
if ((hi += qsz) != min) {
for (lo = min + qsz; --lo >= min; ) {
c = *lo;
for (i = j = lo; (j -= qsz) >= hi; i = j)
*i = *j;
*i = c;
}
}
}
}
/*
* qst:
* Do a quicksort
* First, find the median element, and put that one in the first place as the
* discriminator. (This "median" is just the median of the first, last and
* middle elements). (Using this median instead of the first element is a big
* win). Then, the usual partitioning/swapping, followed by moving the
* discriminator into the right place. Then, figure out the sizes of the two
* partions, do the smaller one recursively and the larger one via a repeat of
* this code. Stopping when there are less than THRESH elements in a partition
* and cleaning up with an insertion sort (in our caller) is a huge win.
* All data swaps are done in-line, which is space-losing but time-saving.
* (And there are only three places where this is done).
*/
static void qst(char *base, char *max)
{
register char c, *i, *j, *jj;
register int ii;
char *mid, *tmp;
int lo, hi;
/*
* At the top here, lo is the number of characters of elements in the
* current partition. (Which should be max - base).
* Find the median of the first, last, and middle element and make
* that the middle element. Set j to largest of first and middle.
* If max is larger than that guy, then it's that guy, else compare
* max with loser of first and take larger. Things are set up to
* prefer the middle, then the first in case of ties.
*/
lo = max - base; /* number of elements as chars */
do {
mid = i = base + qsz * ((lo / qsz) >> 1);
if (lo >= mthresh) {
j = ((*qcmp)((jj = base), i) > 0 ? jj : i);
if ((*qcmp)(j, (tmp = max - qsz)) > 0) {
/* switch to first loser */
j = (j == jj ? i : jj);
if ((*qcmp)(j, tmp) < 0)
j = tmp;
}
if (j != i) {
ii = qsz;
do {
c = *i;
*i++ = *j;
*j++ = c;
} while (--ii);
}
}
/*
* Semi-standard quicksort partitioning/swapping
*/
for (i = base, j = max - qsz; ; ) {
while (i < mid && (*qcmp)(i, mid) <= 0)
i += qsz;
while (j > mid) {
if ((*qcmp)(mid, j) <= 0) {
j -= qsz;
continue;
}
tmp = i + qsz; /* value of i after swap */
if (i == mid) {
/* j <-> mid, new mid is j */
mid = jj = j;
} else {
/* i <-> j */
jj = j;
j -= qsz;
}
goto swap;
}
if (i == mid) {
break;
} else {
/* i <-> mid, new mid is i */
jj = mid;
tmp = mid = i; /* value of i after swap */
j -= qsz;
}
swap:
ii = qsz;
do {
c = *i;
*i++ = *jj;
*jj++ = c;
} while (--ii);
i = tmp;
}
/*
* Look at sizes of the two partitions, do the smaller
* one first by recursion, then do the larger one by
* making sure lo is its size, base and max are update
* correctly, and branching back. But only repeat
* (recursively or by branching) if the partition is
* of at least size THRESH.
*/
i = (j = mid) + qsz;
if ((lo = j - base) <= (hi = max - i)) {
if (lo >= thresh)
qst(base, j);
base = i;
lo = hi;
} else {
if (hi >= thresh)
qst(i, max);
max = j;
}
} while (lo >= thresh);
}
|