1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
<div align="center">
<img src="https://github.com/tiny-dnn/tiny-dnn/blob/master/docs/logo/TinyDNN-logo-letters-alpha-version.png"><br><br>
</div>
-----------------
[](https://gitter.im/tiny-dnn/users) [](http://tiny-dnn.readthedocs.io/) [](https://raw.githubusercontent.com/tiny-dnn/tiny-dnn/master/LICENSE) [](https://coveralls.io/github/tiny-dnn/tiny-dnn?branch=master)
**tiny-dnn** is a C++11 implementation of deep learning. It is suitable for deep learning on limited computational resource, embedded systems and IoT devices.
| **`Linux/Mac OS`** | **`Windows`** |
|------------------|-------------|
|[](https://travis-ci.org/tiny-dnn/tiny-dnn)|[](https://ci.appveyor.com/project/tinydnn/tiny-dnn)|
## Table of contents
* [Features](#features)
* [Comparison with other libraries](#comparison-with-other-libraries)
* [Supported networks](#supported-networks)
* [Dependencies](#dependencies)
* [Build](#build)
* [Examples](#examples)
* [Contributing](#contributing)
* [References](#references)
* [License](#license)
* [Gitter rooms](#gitter-rooms)
Check out the [documentation](http://tiny-dnn.readthedocs.io/) for more info.
## What's New
- 2016/9/14 [tiny-dnn v1.0.0alpha is released!](https://github.com/tiny-dnn/tiny-dnn/releases/tag/v1.0.0a)
- 2016/8/7 tiny-dnn is now moved to organization account, and rename into tiny-dnn :)
- 2016/7/27 [tiny-dnn v0.1.1 released!](https://github.com/tiny-dnn/tiny-dnn/releases/tag/v0.1.1)
## Features
- reasonably fast, without GPU
- with TBB threading and SSE/AVX vectorization
- 98.8% accuracy on MNIST in 13 minutes training (@Core i7-3520M)
- portable & header-only
- Run anywhere as long as you have a compiler which supports C++11
- Just include tiny_dnn.h and write your model in C++. There is nothing to install.
- easy to integrate with real applications
- no output to stdout/stderr
- a constant throughput (simple parallelization model, no garbage collection)
- work without throwing an exception
- [can import caffe's model](https://github.com/tiny-dnn/tiny-dnn/tree/master/examples/caffe_converter)
- simply implemented
- be a good library for learning neural networks
## Comparison with other libraries
||tiny-dnn|[caffe](https://github.com/BVLC/caffe)|[Theano](https://github.com/Theano/Theano)|[TensorFlow](https://www.tensorflow.org/)|
|---|---|---|---|---|
|Prerequisites|__Nothing__(Optional:TBB,OpenMP)|BLAS,Boost,protobuf,glog,gflags,hdf5, (Optional:CUDA,OpenCV,lmdb,leveldb etc)|Numpy,Scipy,BLAS,(optional:nose,Sphinx,CUDA etc)|numpy,six,protobuf,(optional:CUDA,Bazel)|
|Modeling By|C++ code|Config File|Python Code|Python Code|
|GPU Support|No|Yes|Yes|Yes|
|Installing|Unnecessary|Necessary|Necessary|Necessary|
|Windows Support|Yes|No*|Yes|No*|
|Pre-Trained Model|Yes(via caffe-converter)|Yes|No*|No*|
*unofficial version is available
## Supported networks
### layer-types
- core
- fully-connected
- dropout
- linear operation
- power
- convolution
- convolutional
- average pooling
- max pooling
- deconvolutional
- average unpooling
- max unpooling
- normalization
- contrast normalization (only forward pass)
- batch normalization
- split/merge
- concat
- slice
- elementwise-add
### activation functions
* tanh
* sigmoid
* softmax
* rectified linear(relu)
* leaky relu
* identity
* exponential linear units(elu)
### loss functions
* cross-entropy
* mean squared error
* mean absolute error
* mean absolute error with epsilon range
### optimization algorithms
* stochastic gradient descent (with/without L2 normalization and momentum)
* adagrad
* rmsprop
* adam
## Dependencies
Nothing. All you need is a C++11 compiler.
## Build
tiny-dnn is header-ony, so *there's nothing to build*. If you want to execute sample program or unit tests, you need to install [cmake](https://cmake.org/) and type the following commands:
```
cmake .
```
Then open .sln file in visual studio and build(on windows/msvc), or type ```make``` command(on linux/mac/windows-mingw).
Some cmake options are available:
|options|description|default|additional requirements to use|
|-----|-----|----|----|
|USE_TBB|Use [Intel TBB](https://www.threadingbuildingblocks.org/) for parallelization|OFF<sup>1</sup>|[Intel TBB](https://www.threadingbuildingblocks.org/)|
|USE_OMP|Use OpenMP for parallelization|OFF<sup>1</sup>|[OpenMP Compiler](http://openmp.org/wp/openmp-compilers/)|
|USE_SSE|Use Intel SSE instruction set|ON|Intel CPU which supports SSE|
|USE_AVX|Use Intel AVX instruction set|ON|Intel CPU which supports AVX|
|USE_NNPACK|Use NNPACK for convolution operation|OFF|[Acceleration package for neural networks on multi-core CPUs](https://github.com/Maratyszcza/NNPACK)|
|USE_OPENCL|Enable/Disable OpenCL support (experimental)|OFF|[The open standard for parallel programming of heterogeneous systems](https://www.khronos.org/opencl/)|
|USE_LIBDNN|Use Greentea LinDNN for convolution operation with GPU via OpenCL (experimental)|OFF|[An universal convolution implementation supporting CUDA and OpenCL](https://github.com/naibaf7/libdnn)|
|USE_SERIALIZER|Enable model serialization|ON<sup>2</sup>|-|
|BUILD_TESTS|Build unit tests|OFF<sup>3</sup>|-|
|BUILD_EXAMPLES|Build example projects|OFF|-|
|BUILD_DOCS|Build documentation|OFF|[Doxygen](http://www.doxygen.org/)|
<sup>1</sup> tiny-dnn use c++11 standard library for parallelization by default
<sup>2</sup> If you don't use serialization, you can switch off to speedup compilation time.
<sup>3</sup> tiny-dnn uses [Google Test](https://github.com/google/googletest) as default framework to run unit tests. No pre-installation required, it's automatically downloaded during CMake configuration.
For example, type the following commands if you want to use intel TBB and build tests:
```bash
cmake -DUSE_TBB=ON -DBUILD_TESTS=ON .
```
## Customize configurations
You can edit include/config.h to customize default behavior.
## Examples
construct convolutional neural networks
```cpp
#include "tiny_dnn/tiny_dnn.h"
using namespace tiny_dnn;
using namespace tiny_dnn::activation;
using namespace tiny_dnn::layers;
void construct_cnn() {
using namespace tiny_dnn;
network<sequential> net;
// add layers
net << conv<tan_h>(32, 32, 5, 1, 6) // in:32x32x1, 5x5conv, 6fmaps
<< ave_pool<tan_h>(28, 28, 6, 2) // in:28x28x6, 2x2pooling
<< fc<tan_h>(14 * 14 * 6, 120) // in:14x14x6, out:120
<< fc<identity>(120, 10); // in:120, out:10
assert(net.in_data_size() == 32 * 32);
assert(net.out_data_size() == 10);
// load MNIST dataset
std::vector<label_t> train_labels;
std::vector<vec_t> train_images;
parse_mnist_labels("train-labels.idx1-ubyte", &train_labels);
parse_mnist_images("train-images.idx3-ubyte", &train_images, -1.0, 1.0, 2, 2);
// declare optimization algorithm
adagrad optimizer;
// train (50-epoch, 30-minibatch)
net.train<mse>(optimizer, train_images, train_labels, 30, 50);
// save
net.save("net");
// load
// network<sequential> net2;
// net2.load("net");
}
```
construct multi-layer perceptron(mlp)
```cpp
#include "tiny_dnn/tiny_dnn.h"
using namespace tiny_dnn;
using namespace tiny_dnn::activation;
using namespace tiny_dnn::layers;
void construct_mlp() {
network<sequential> net;
net << fc<sigmoid>(32 * 32, 300)
<< fc<identity>(300, 10);
assert(net.in_data_size() == 32 * 32);
assert(net.out_data_size() == 10);
}
```
another way to construct mlp
```cpp
#include "tiny_dnn/tiny_dnn.h"
using namespace tiny_dnn;
using namespace tiny_dnn::activation;
void construct_mlp() {
auto mynet = make_mlp<tan_h>({ 32 * 32, 300, 10 });
assert(mynet.in_data_size() == 32 * 32);
assert(mynet.out_data_size() == 10);
}
```
more sample, read examples/main.cpp or [MNIST example](https://github.com/tiny-dnn/tiny-dnn/tree/master/examples/mnist) page.
## Contributing
Since deep learning community is rapidly growing, we'd love to get contributions from you to accelerate tiny-dnn development!
For a quick guide to contributing, take a look at the [Contribution Documents](docs/developer_guides/How-to-contribute.md).
## References
[1] Y. Bengio, [Practical Recommendations for Gradient-Based Training of Deep Architectures.](http://arxiv.org/pdf/1206.5533v2.pdf)
arXiv:1206.5533v2, 2012
[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, [Gradient-based learning applied to document recognition.](http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf)
Proceedings of the IEEE, 86, 2278-2324.
other useful reference lists:
- [UFLDL Recommended Readings](http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Recommended_Readings)
- [deeplearning.net reading list](http://deeplearning.net/reading-list/)
## License
The BSD 3-Clause License
## Gitter rooms
We have a gitter rooms for discussing new features & QA.
Feel free to join us!
<table>
<tr>
<td><b> developers </b></td>
<td> https://gitter.im/tiny-dnn/developers </td>
</tr>
<tr>
<td><b> users </b></td>
<td> https://gitter.im/tiny-dnn/users </td>
</tr>
</table>
|