File: train.cpp

package info (click to toggle)
tiny-dnn 1.0.0a3%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,760 kB
  • sloc: cpp: 16,471; ansic: 11,829; lisp: 3,682; python: 3,422; makefile: 206
file content (258 lines) | stat: -rw-r--r-- 9,552 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
/*
    Copyright (c) 2013, Taiga Nomi
    All rights reserved.

    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions are met:
    * Redistributions of source code must retain the above copyright
    notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
    notice, this list of conditions and the following disclaimer in the
    documentation and/or other materials provided with the distribution.
    * Neither the name of the <organization> nor the
    names of its contributors may be used to endorse or promote products
    derived from this software without specific prior written permission.

    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
    EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
    WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
    DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
    DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
    LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
    ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <iostream>
#include "tiny_dnn/tiny_dnn.h"

using namespace tiny_dnn;
using namespace tiny_dnn::activation;

///////////////////////////////////////////////////////////////////////////////
// recongnition on MNIST similar to LaNet-5 adding deconvolution

void deconv_lanet(network<graph>& nn,
    std::vector<label_t> train_labels,
    std::vector<label_t> test_labels,
    std::vector<vec_t> train_images,
    std::vector<vec_t> test_images)
{
    // connection table [Y.Lecun, 1998 Table.1]
    #define O true
    #define X false
        static const bool tbl[] = {
            O, X, X, X, O, O, O, X, X, O, O, O, O, X, O, O,
            O, O, X, X, X, O, O, O, X, X, O, O, O, O, X, O,
            O, O, O, X, X, X, O, O, O, X, X, O, X, O, O, O,
            X, O, O, O, X, X, O, O, O, O, X, X, O, X, O, O,
            X, X, O, O, O, X, X, O, O, O, O, X, O, O, X, O,
            X, X, X, O, O, O, X, X, O, O, O, O, X, O, O, O
        };
    #undef O
    #undef X

    // declare nodes
    input_layer i1(shape3d(32,32,1));
    convolutional_layer<tan_h> c1(32, 32, 5, 1, 6);
    average_pooling_layer<tan_h> p1(28, 28, 6, 2);
    deconvolutional_layer<tan_h> d1(14, 14, 5, 6, 16, connection_table(tbl, 6, 16));
    average_pooling_layer<tan_h> p2(18, 18, 16, 2);
    convolutional_layer<tan_h> c2(9, 9, 9, 16, 120);
    fully_connected_layer<tan_h> f1(120, 10);

    // connect them to graph
    i1 << c1 << p1 << d1 << p2 << c2 << f1;
    construct_graph(nn, { &i1 }, { &f1 });

    std::cout << "start training" << std::endl;

    progress_display disp((unsigned long)train_images.size());
    timer t;
    int minibatch_size = 10;
    int num_epochs = 30;

    adagrad optimizer;
    optimizer.alpha *= static_cast<tiny_dnn::float_t>(std::sqrt(minibatch_size));

    // create callback
    auto on_enumerate_epoch = [&](){
        std::cout << t.elapsed() << "s elapsed." << std::endl;
        tiny_dnn::result res = nn.test(test_images, test_labels);
        std::cout << res.num_success << "/" << res.num_total << std::endl;

        disp.restart((unsigned long)train_images.size());
        t.restart();
    };

    auto on_enumerate_minibatch = [&](){
        disp += minibatch_size;
    };

    // training
    nn.train<mse>(optimizer, train_images, train_labels, minibatch_size,
                  num_epochs, on_enumerate_minibatch, on_enumerate_epoch);

    std::cout << "end training." << std::endl;

    // test and show results
    nn.test(test_images, test_labels).print_detail(std::cout);

    // save networks
    std::ofstream ofs("deconv_lanet_weights");
    ofs << nn;
}

///////////////////////////////////////////////////////////////////////////////
// Deconcolutional Auto-encoder
void deconv_ae(network<sequential>& nn,
    std::vector<label_t> train_labels,
    std::vector<label_t> test_labels,
    std::vector<vec_t> train_images,
    std::vector<vec_t> test_images) {

    // construct nets
    nn << convolutional_layer<tan_h>(32, 32, 5, 1, 6)
       << average_pooling_layer<tan_h>(28, 28, 6, 2)
       << convolutional_layer<tan_h>(14, 14, 3, 6, 16)
       << deconvolutional_layer<tan_h>(12, 12, 3, 16, 6)
       << average_unpooling_layer<tan_h>(14, 14, 6, 2)
       << deconvolutional_layer<tan_h>(28, 28, 5, 6, 1);

    // load train-data and make corruption

    std::vector<vec_t> training_images_corrupted(train_images);

    for (auto& d : training_images_corrupted) {
        d = corrupt(move(d), tiny_dnn::float_t(0.1), tiny_dnn::float_t(0.0)); // corrupt 10% data
    }

    gradient_descent optimizer;

    // learning deconcolutional Auto-encoder
    nn.train<mse>(optimizer, training_images_corrupted, train_images);

    std::cout << "end training." << std::endl;

    // save networks
    std::ofstream ofs("deconv_ae_weights");
    ofs << nn;
}

///////////////////////////////////////////////////////////////////////////////
// ENet
void enet(network<graph>& nn,
    std::vector<label_t> train_labels,
    std::vector<label_t> test_labels,
    std::vector<vec_t> train_images,
    std::vector<vec_t> test_images) {

    // initial module
    input_layer ii0(shape3d(32,32,1));
    convolutional_layer<tan_h> ic1(32, 32, 3, 1, 8, padding::same, true, 2, 2);
    max_pooling_layer<tan_h> ip1(32, 32, 1, 2);
    convolutional_layer<tan_h> ic2(16, 16, 1, 1, 8, padding::same);
    concat_layer icc1(2, 16*16*8);

    ii0 << ip1 << ic2;
    ii0 << ic1;
    (ic2, ic1) << icc1;

    // bottle neck module 1
    max_pooling_layer<tan_h> b1p1(16, 16, 16, 2);
    convolutional_layer<tan_h> b1c2(8, 8, 1, 16, 32, padding::same);
    convolutional_layer<tan_h> b1c1(16, 16, 1, 16, 32, padding::same);
    convolutional_layer<tan_h> b1c3(16, 16, 2, 32, 32, padding::same, true, 2, 2);
    convolutional_layer<tan_h> b1c4(8, 8, 1, 32, 32, padding::same);
    concat_layer b1cc1(2, 8*8*32);

    icc1 << b1p1 << b1c2;
    icc1 << b1c1 << b1c3 << b1c4;
    (b1c2, b1c4) << b1cc1;

    // bottle neck module 2
    deconvolutional_layer<tan_h> b2d1(8, 8, 1, 64, 16, padding::same, true, 2, 2);
    deconvolutional_layer<tan_h> b2d2(16, 16, 1, 16, 1, padding::same, true, 2, 2);
    fully_connected_layer<tan_h> f1(32*32, 10);
    b1cc1 << b2d1 << b2d2 << f1;

    // construct whole network
    construct_graph(nn, { &ii0 }, { &f1 });

    // load train-data and make corruption

    std::cout << "start training" << std::endl;

    progress_display disp((unsigned long)train_images.size());
    timer t;
    int minibatch_size = 10;
    int num_epochs = 30;

    adagrad optimizer;
    optimizer.alpha *= tiny_dnn::float_t(std::sqrt(minibatch_size));

    // create callback
    auto on_enumerate_epoch = [&](){
        std::cout << t.elapsed() << "s elapsed." << std::endl;
        tiny_dnn::result res = nn.test(test_images, test_labels);
        std::cout << res.num_success << "/" << res.num_total << std::endl;

        disp.restart((unsigned long)train_images.size());
        t.restart();
    };

    auto on_enumerate_minibatch = [&](){
        disp += minibatch_size;
    };

    // training
    nn.train<mse>(optimizer, train_images, train_labels, minibatch_size,
                  num_epochs, on_enumerate_minibatch, on_enumerate_epoch);

    std::cout << "end training." << std::endl;

    // test and show results
    nn.test(test_images, test_labels).print_detail(std::cout);

    // save networks
    std::ofstream ofs("deconv_lanet_weights");
    ofs << nn;
}

void train(std::string data_dir_path, std::string experiment) {

    std::cout << "load traing and testing data..." << std::endl;

    // load MNIST dataset
    std::vector<label_t> train_labels, test_labels;
    std::vector<vec_t> train_images, test_images;

    parse_mnist_labels(data_dir_path+"/train-labels.idx1-ubyte",
                       &train_labels);
    parse_mnist_images(data_dir_path+"/train-images.idx3-ubyte",
                       &train_images, -1.0, 1.0, 2, 2);
    parse_mnist_labels(data_dir_path+"/t10k-labels.idx1-ubyte",
                       &test_labels);
    parse_mnist_images(data_dir_path+"/t10k-images.idx3-ubyte",
                       &test_images, -1.0, 1.0, 2, 2);
    // specify loss-function and learning strategy
    network<sequential> nn_s;
    network<graph> nn_g;

    if (experiment == "deconv_lanet")
        deconv_lanet(nn_g, train_labels, test_labels, train_images, test_images); // recongnition on MNIST similar to LaNet-5 adding deconvolution
    else if (experiment == "deconv_ae")
        deconv_ae(nn_s, train_labels, test_labels, train_images, test_images); // Deconcolution Auto-encoder on MNIST
    else if (experiment == "enet")
        enet(nn_g, train_labels, test_labels, train_images, test_images); // Bottle neck module based ENet
}

int main(int argc, char **argv) {
    if (argc != 3) {
        std::cerr << "Usage : " << argv[0]
                  << " path_to_data (example:../data) (example:deconv_lanet, deconv_ae or enet)" << std::endl;
        return -1;
    }
    train(argv[1], argv[2]);
}