1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
|
/*
Copyright (c) 2013, Taiga Nomi
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the <organization> nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <iostream>
#include <memory>
#include <string>
#include <algorithm>
#include <vector>
#include "tiny_dnn/tiny_dnn.h"
using namespace tiny_dnn;
using namespace tiny_dnn::activation;
using namespace tiny_dnn::layers;
using namespace std;
void sample1_convnet(const string& data_dir = "../../data");
void sample2_mlp(const string& data_dir = "../../data");
void sample3_dae();
void sample4_dropout(const string& data_dir = "../../data");
void sample5_unbalanced_training_data(const string& data_dir = "../../data");
void sample6_graph();
int main(int argc, char** argv) {
try {
if (argc == 2) {
sample1_convnet(argv[1]);
} else {
sample1_convnet();
}
}
catch (const nn_error& e) {
std::cout << e.what() << std::endl;
}
}
///////////////////////////////////////////////////////////////////////////////
// learning convolutional neural networks (LeNet-5 like architecture)
void sample1_convnet(const string& data_dir) {
// construct LeNet-5 architecture
network<sequential> nn;
adagrad optimizer;
// connection table [Y.Lecun, 1998 Table.1]
#define O true
#define X false
static const bool connection[] = {
O, X, X, X, O, O, O, X, X, O, O, O, O, X, O, O,
O, O, X, X, X, O, O, O, X, X, O, O, O, O, X, O,
O, O, O, X, X, X, O, O, O, X, X, O, X, O, O, O,
X, O, O, O, X, X, O, O, O, O, X, X, O, X, O, O,
X, X, O, O, O, X, X, O, O, O, O, X, O, O, X, O,
X, X, X, O, O, O, X, X, O, O, O, O, X, O, O, O
};
#undef O
#undef X
nn << convolutional_layer<tan_h>(
32, 32, 5, 1, 6) /* 32x32 in, 5x5 kernel, 1-6 fmaps conv */
<< average_pooling_layer<tan_h>(
28, 28, 6, 2) /* 28x28 in, 6 fmaps, 2x2 subsampling */
<< convolutional_layer<tan_h>(
14, 14, 5, 6, 16, connection_table(connection, 6, 16))
<< average_pooling_layer<tan_h>(10, 10, 16, 2)
<< convolutional_layer<tan_h>(5, 5, 5, 16, 120)
<< fully_connected_layer<tan_h>(120, 10);
std::cout << "load models..." << std::endl;
// load MNIST dataset
std::vector<label_t> train_labels, test_labels;
std::vector<vec_t> train_images, test_images;
std::string train_labels_path = data_dir + "/train-labels.idx1-ubyte";
std::string train_images_path = data_dir + "/train-images.idx3-ubyte";
std::string test_labels_path = data_dir + "/t10k-labels.idx1-ubyte";
std::string test_images_path = data_dir + "/t10k-images.idx3-ubyte";
parse_mnist_labels(train_labels_path, &train_labels);
parse_mnist_images(train_images_path, &train_images, -1.0, 1.0, 2, 2);
parse_mnist_labels(test_labels_path, &test_labels);
parse_mnist_images(test_images_path, &test_images, -1.0, 1.0, 2, 2);
std::cout << "start learning" << std::endl;
progress_display disp(train_images.size());
timer t;
int minibatch_size = 10;
optimizer.alpha *= std::sqrt(minibatch_size);
// create callback
auto on_enumerate_epoch = [&](){
std::cout << t.elapsed() << "s elapsed." << std::endl;
tiny_dnn::result res = nn.test(test_images, test_labels);
std::cout << res.num_success << "/" << res.num_total << std::endl;
disp.restart(train_images.size());
t.restart();
};
auto on_enumerate_minibatch = [&](){
disp += minibatch_size;
};
// training
nn.train<mse>(optimizer, train_images, train_labels, minibatch_size, 20,
on_enumerate_minibatch, on_enumerate_epoch);
std::cout << "end training." << std::endl;
// test and show results
nn.test(test_images, test_labels).print_detail(std::cout);
// save networks
std::ofstream ofs("LeNet-weights");
ofs << nn;
}
///////////////////////////////////////////////////////////////////////////////
// learning 3-Layer Networks
void sample2_mlp(const string& data_dir) {
const serial_size_t num_hidden_units = 500;
#if defined(_MSC_VER) && _MSC_VER < 1800
// initializer-list is not supported
int num_units[] = { 28 * 28, num_hidden_units, 10 };
auto nn = make_mlp<tan_h>(num_units, num_units + 3);
#else
auto nn = make_mlp<tan_h>({ 28 * 28, num_hidden_units, 10 });
#endif
gradient_descent optimizer;
// load MNIST dataset
std::vector<label_t> train_labels, test_labels;
std::vector<vec_t> train_images, test_images;
std::string train_labels_path = data_dir + "/train-labels.idx1-ubyte";
std::string train_images_path = data_dir + "/train-images.idx3-ubyte";
std::string test_labels_path = data_dir + "/t10k-labels.idx1-ubyte";
std::string test_images_path = data_dir + "/t10k-images.idx3-ubyte";
parse_mnist_labels(train_labels_path, &train_labels);
parse_mnist_images(train_images_path, &train_images, -1.0, 1.0, 0, 0);
parse_mnist_labels(test_labels_path, &test_labels);
parse_mnist_images(test_images_path, &test_images, -1.0, 1.0, 0, 0);
optimizer.alpha = 0.001;
progress_display disp(train_images.size());
timer t;
// create callback
auto on_enumerate_epoch = [&](){
std::cout << t.elapsed() << "s elapsed." << std::endl;
tiny_dnn::result res = nn.test(test_images, test_labels);
std::cout << optimizer.alpha << ","
<< res.num_success << "/" << res.num_total << std::endl;
optimizer.alpha *= 0.85; // decay learning rate
optimizer.alpha = std::max((tiny_dnn::float_t)0.00001, optimizer.alpha);
disp.restart(train_images.size());
t.restart();
};
auto on_enumerate_data = [&](){
++disp;
};
nn.train<mse>(optimizer, train_images, train_labels, 1, 20,
on_enumerate_data, on_enumerate_epoch);
}
///////////////////////////////////////////////////////////////////////////////
// denoising auto-encoder
void sample3_dae() {
#if defined(_MSC_VER) && _MSC_VER < 1800
// initializer-list is not supported
int num_units[] = { 100, 400, 100 };
auto nn = make_mlp<tan_h>(num_units, num_units + 3);
#else
auto nn = make_mlp<tan_h>({ 100, 400, 100 });
#endif
std::vector<vec_t> train_data_original;
// load train-data
std::vector<vec_t> train_data_corrupted(train_data_original);
for (auto& d : train_data_corrupted) {
d = corrupt(move(d), 0.1, 0.0); // corrupt 10% data
}
gradient_descent optimizer;
// learning 100-400-100 denoising auto-encoder
nn.train<mse>(optimizer, train_data_corrupted, train_data_original);
}
///////////////////////////////////////////////////////////////////////////////
// dropout-learning
void sample4_dropout(const string& data_dir) {
typedef network<sequential> Network;
Network nn;
serial_size_t input_dim = 28*28;
serial_size_t hidden_units = 800;
serial_size_t output_dim = 10;
gradient_descent optimizer;
fully_connected_layer<tan_h> f1(input_dim, hidden_units);
dropout_layer dropout(hidden_units, 0.5);
fully_connected_layer<tan_h> f2(hidden_units, output_dim);
nn << f1 << dropout << f2;
optimizer.alpha = 0.003; // TODO(nyanp): not optimized
optimizer.lambda = 0.0;
// load MNIST dataset
std::vector<label_t> train_labels, test_labels;
std::vector<vec_t> train_images, test_images;
std::string train_labels_path = data_dir + "/train-labels.idx1-ubyte";
std::string train_images_path = data_dir + "/train-images.idx3-ubyte";
std::string test_labels_path = data_dir + "/t10k-labels.idx1-ubyte";
std::string test_images_path = data_dir + "/t10k-images.idx3-ubyte";
parse_mnist_labels(train_labels_path, &train_labels);
parse_mnist_images(train_images_path, &train_images, -1.0, 1.0, 0, 0);
parse_mnist_labels(test_labels_path, &test_labels);
parse_mnist_images(test_images_path, &test_images, -1.0, 1.0, 0, 0);
// load train-data, label_data
progress_display disp(train_images.size());
timer t;
// create callback
auto on_enumerate_epoch = [&](){
std::cout << t.elapsed() << "s elapsed." << std::endl;
dropout.set_context(net_phase::test);
tiny_dnn::result res = nn.test(test_images, test_labels);
dropout.set_context(net_phase::train);
std::cout << optimizer.alpha << ","
<< res.num_success << "/" << res.num_total << std::endl;
optimizer.alpha *= 0.99; // decay learning rate
optimizer.alpha = std::max((tiny_dnn::float_t)0.00001, optimizer.alpha);
disp.restart(train_images.size());
t.restart();
};
auto on_enumerate_data = [&](){
++disp;
};
nn.train<mse>(optimizer, train_images, train_labels, 1, 100,
on_enumerate_data, on_enumerate_epoch);
// change context to enable all hidden-units
// f1.set_context(dropout::test_phase);
// std::cout << res.num_success << "/" << res.num_total << std::endl;
}
#include "tiny_dnn/util/target_cost.h"
///////////////////////////////////////////////////////////////////////////////
// learning unbalanced training data
void sample5_unbalanced_training_data(const string& data_dir) {
// keep the network relatively simple
auto nn_standard = make_mlp<tan_h>({ 28 * 28, num_hidden_units, 10 });
const serial_size_t num_hidden_units = 20;
auto nn_balanced = make_mlp<tan_h>({ 28 * 28, num_hidden_units, 10 });
gradient_descent optimizer;
// load MNIST dataset
std::vector<label_t> train_labels, test_labels;
std::vector<vec_t> train_images, test_images;
std::string train_labels_path = data_dir + "/train-labels.idx1-ubyte";
std::string train_images_path = data_dir + "/train-images.idx3-ubyte";
std::string test_labels_path = data_dir + "/t10k-labels.idx1-ubyte";
std::string test_images_path = data_dir + "/t10k-images.idx3-ubyte";
parse_mnist_labels(train_labels_path, &train_labels);
parse_mnist_images(train_images_path, &train_images, -1.0, 1.0, 0, 0);
parse_mnist_labels(test_labels_path, &test_labels);
parse_mnist_images(test_images_path, &test_images, -1.0, 1.0, 0, 0);
{ // create an unbalanced training set
std::vector<label_t> train_labels_unbalanced;
std::vector<vec_t> train_images_unbalanced;
train_labels_unbalanced.reserve(train_labels.size());
train_images_unbalanced.reserve(train_images.size());
for (size_t i = 0, end = train_labels.size(); i < end; ++i) {
const label_t label = train_labels[i];
// drop most 0s, 1s, 2s, 3s, and 4s
const bool keep_sample = label >= 5 || bernoulli(0.005);
if (keep_sample) {
train_labels_unbalanced.push_back(label);
train_images_unbalanced.push_back(train_images[i]);
}
}
// keep the newly created unbalanced training set
std::swap(train_labels, train_labels_unbalanced);
std::swap(train_images, train_images_unbalanced);
}
optimizer.alpha = 0.001;
progress_display disp(train_images.size());
timer t;
const int minibatch_size = 10;
auto nn = &nn_standard; // the network referred to by the callbacks
// create callbacks - as usual
auto on_enumerate_epoch = [&](){
std::cout << t.elapsed() << "s elapsed." << std::endl;
tiny_dnn::result res = nn->test(test_images, test_labels);
std::cout << optimizer.alpha << ","
<< res.num_success << "/" << res.num_total << std::endl;
optimizer.alpha *= 0.85; // decay learning rate
optimizer.alpha = std::max(
static_cast<tiny_dnn::float_t>(0.00001), optimizer.alpha);
disp.restart(train_images.size());
t.restart();
};
auto on_enumerate_data = [&](){
disp += minibatch_size;
};
// first train the standard network (default cost - equal for each sample)
// - note that it does not learn the classes 0-4
nn_standard.train<mse>(optimizer, train_images, train_labels,
minibatch_size, 20, on_enumerate_data,
on_enumerate_epoch, true, CNN_TASK_SIZE);
// then train another network, now with explicitly
// supplied target costs (aim: a more balanced predictor)
// - note that it can learn the classes 0-4 (at least somehow)
nn = &nn_balanced;
optimizer = gradient_descent();
const auto target_cost = create_balanced_target_cost(train_labels, 0.8);
nn_balanced.train<mse>(optimizer, train_images, train_labels,
minibatch_size, 20, on_enumerate_data,
on_enumerate_epoch, true, CNN_TASK_SIZE,
target_cost);
// test and show results
std::cout << "\nStandard training (implicitly assumed equal "
<< "cost for every sample):\n";
nn_standard.test(test_images, test_labels).print_detail(std::cout);
std::cout << "\nBalanced training "
<< "(explicitly supplied target costs):\n";
nn_balanced.test(test_images, test_labels).print_detail(std::cout);
}
void sample6_graph() {
// declare node
auto in1 = std::make_shared<input_layer>(shape3d(3, 1, 1));
auto in2 = std::make_shared<input_layer>(shape3d(3, 1, 1));
auto added = std::make_shared<add>(2, 3);
auto out = std::make_shared<linear_layer<relu>>(3);
// connect
(in1, in2) << added;
added << out;
network<graph> net;
construct_graph(net, { in1, in2 }, { out });
auto res = net.predict({ { 2, 4, 3 }, { -1, 2, -5 } })[0];
// relu({2,4,3} + {-1,2,-5}) = {1,6,0}
std::cout << res[0] << "," << res[1] << "," << res[2] << std::endl;
}
|