File: test.cpp

package info (click to toggle)
tiny-dnn 1.0.0a3%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,760 kB
  • sloc: cpp: 16,471; ansic: 11,829; lisp: 3,682; python: 3,422; makefile: 206
file content (97 lines) | stat: -rw-r--r-- 3,569 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
/*
    Copyright (c) 2013, Taiga Nomi
    All rights reserved.
    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions are met:
    * Redistributions of source code must retain the above copyright
    notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
    notice, this list of conditions and the following disclaimer in the
    documentation and/or other materials provided with the distribution.
    * Neither the name of the <organization> nor the
    names of its contributors may be used to endorse or promote products
    derived from this software without specific prior written permission.

    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
    EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
    WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
    DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
    DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
    LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
    ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <iostream>
#include "tiny_dnn/tiny_dnn.h"

using namespace tiny_dnn;
using namespace tiny_dnn::activation;
using namespace std;

// rescale output to 0-100
template <typename Activation>
double rescale(double x) {
    Activation a;
    return 100.0 * (x - a.scale().first) / (a.scale().second - a.scale().first);
}

void convert_image(const std::string& imagefilename,
    double minv,
    double maxv,
    int w,
    int h,
    vec_t& data) {

    image<> img(imagefilename, image_type::grayscale);
    image<> resized = resize_image(img, w, h);

    // mnist dataset is "white on black", so negate required
    std::transform(resized.begin(), resized.end(), std::back_inserter(data),
        [=](uint8_t c) { return (255 - c) * (maxv - minv) / 255.0 + minv; });
}

void recognize(const std::string& dictionary, const std::string& filename) {
    network<sequential> nn;

    nn.load(dictionary);

    // convert imagefile to vec_t
    vec_t data;
    convert_image(filename, -1.0, 1.0, 32, 32, data);

    // recognize
    auto res = nn.predict(data);
    vector<pair<double, int> > scores;

    // sort & print top-3
    for (int i = 0; i < 10; i++)
        scores.emplace_back(rescale<tan_h>(res[i]), i);

    sort(scores.begin(), scores.end(), greater<pair<double, int>>());

    for (int i = 0; i < 3; i++)
        cout << scores[i].second << "," << scores[i].first << endl;

    // save outputs of each layer
    for (size_t i = 0; i < nn.depth(); i++) {
        auto out_img = nn[i]->output_to_image();
        auto filename = "layer_" + std::to_string(i) + ".png";
        out_img.save(filename);
    }
    // save filter shape of first convolutional layer
    {
        auto weight = nn.at<convolutional_layer<tan_h>>(0).weight_to_image();
        auto filename = "weights.png";
        weight.save(filename);
    }
}

int main(int argc, char** argv) {
    if (argc != 2) {
        cout << "please specify image file";
        return 0;
    }
    recognize("LeNet-model", argv[1]);
}