File: im2col_nd.cl

package info (click to toggle)
tiny-dnn 1.0.0a3%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,760 kB
  • sloc: cpp: 16,471; ansic: 11,829; lisp: 3,682; python: 3,422; makefile: 206
file content (217 lines) | stat: -rw-r--r-- 8,402 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#ifndef __OPENCL_VERSION__
#include "header.cl"
#endif

__kernel void TEMPLATE(im2col_nd, Dtype)(const int_tp n, const int_tp num_axes,
                                         const int_tp channel_axis,
                                         __global const Dtype* data_im,
                                         const int_tp data_im_off,
                                         __global const int_tp* im_shape,
                                         __global const int_tp* col_shape,
                                         __global const int_tp* kernel_shape,
                                         __global const int_tp* pad,
                                         __global const int_tp* stride,
                                         __global const int_tp* dilation,
                                         __global Dtype* data_col,
                                         const int_tp data_col_off) {
  int_tp d_temp[6];
  int_tp d_iter[6];
  int_tp i;

  __global const int_tp* im_shape_ptr = im_shape + channel_axis;
  __global const int_tp* col_shape_ptr = col_shape + channel_axis;

  __local int_tp shared_dilation[6];
  __local int_tp shared_kernel_shape[6];
  __local int_tp shared_pad[6];
  __local int_tp shared_stride[6];
  __local int_tp shared_col_shape[6 + 1];
  __local int_tp shared_im_shape[6 + 1];

  for (int li = get_local_id(0); li < num_axes; li += get_local_size(0)) {
    shared_dilation[li] = dilation[li];
    shared_kernel_shape[li] = kernel_shape[li];
    shared_pad[li] = pad[li];
    shared_stride[li] = stride[li];
  }

  for (int li = get_local_id(0); li < num_axes + 1; li += get_local_size(0)) {
    shared_col_shape[li] = col_shape_ptr[li];
    shared_im_shape[li] = im_shape_ptr[li];
  }

  barrier(CLK_LOCAL_MEM_FENCE);

  for (int_tp index = get_global_id(0); index < n;
      index += get_global_size(0)) {
    // Initialize channel_in, computed in the loop below, with intermediate
    // computations used to compute the spatial indices.
    int_tp channel_in = index;
    int_tp channel_out = 1;
    for (i = num_axes - 1; i >= 0; --i) {
      d_temp[i] = channel_in % shared_col_shape[i + 1];
      channel_in /= shared_col_shape[i + 1];
      channel_out *= shared_kernel_shape[i];
    }
    channel_out *= channel_in;
    int_tp data_col_inc = 1;
    for (i = 0; i < num_axes; ++i) {
      channel_out *= shared_col_shape[i + 1];
      channel_out += d_temp[i];
      d_temp[i] = d_temp[i] * shared_stride[i] - shared_pad[i];
      channel_in *= shared_im_shape[i + 1];
      channel_in += d_temp[i];
      data_col_inc *= shared_col_shape[i + 1];
      d_iter[i] = 0;
    }
    __global Dtype* data_col_ptr = data_col + data_col_off + channel_out;
    __global const Dtype* data_im_ptr = data_im + data_im_off + channel_in;
    bool incremented;
    do {
      bool in_range = true;
      for (i = 0; i < num_axes; ++i) {
        const int_tp d_iter_im = d_iter[i] * shared_dilation[i] + d_temp[i];
        in_range &= d_iter_im >= 0 && d_iter_im < shared_im_shape[i + 1];
        if (!in_range) {
          break;
        }
      }
      if (in_range) {
        int_tp data_im_offset = d_iter[0] * shared_dilation[0];
        for (i = 1; i < num_axes; ++i) {
          data_im_offset *= shared_im_shape[i + 1];
          data_im_offset += d_iter[i] * shared_dilation[i];
        }
        *data_col_ptr = data_im_ptr[data_im_offset];
      } else {
        *data_col_ptr = 0;
      }
      data_col_ptr += data_col_inc;
      incremented = false;
      for (i = num_axes - 1; i >= 0; --i) {
        const int_tp d_max = shared_kernel_shape[i];
        if (d_iter[i] == d_max - 1) {
          d_iter[i] = 0;
        } else {  // d_iter[i] < d_max - 1
          ++d_iter[i];
          incremented = true;
          break;
        }
      }  // for (int_tp i = num_axes - 1; i >= 0; --i)
    } while (incremented);  // do
  }
}

__kernel void TEMPLATE(col2im_nd, Dtype)(const int_tp n, const int_tp num_axes,
                                         const int_tp channel_axis,
                                         __global const Dtype* data_col,
                                         const int_tp data_col_off,
                                         __global const int_tp* im_shape,
                                         __global const int_tp* col_shape,
                                         __global const int_tp* kernel_shape,
                                         __global const int_tp* pad,
                                         __global const int_tp* stride,
                                         __global const int_tp* dilation,
                                         __global Dtype* data_im,
                                         const int_tp data_im_off) {
  int_tp d_im[6];
  int_tp d_col_iter[6];
  int_tp d_col_start[6];
  int_tp d_col_end[6];

  __global const int_tp* im_shape_ptr = im_shape + channel_axis;
  __global const int_tp* col_shape_ptr = col_shape + channel_axis;

  __local int_tp shared_dilation[6];
  __local int_tp shared_kernel_shape[6];
  __local int_tp shared_pad[6];
  __local int_tp shared_stride[6];
  __local int_tp shared_col_shape[6 + 1];
  __local int_tp shared_im_shape[6 + 1];

  for (int li = get_local_id(0); li < num_axes; li += get_local_size(0)) {
    shared_dilation[li] = dilation[li];
    shared_kernel_shape[li] = kernel_shape[li];
    shared_pad[li] = pad[li];
    shared_stride[li] = stride[li];
  }
  for (int li = get_local_id(0); li < num_axes + 1; li += get_local_size(0)) {
    shared_col_shape[li] = col_shape_ptr[li];
    shared_im_shape[li] = im_shape_ptr[li];
  }

  barrier(CLK_LOCAL_MEM_FENCE);

  for (int_tp index = get_global_id(0); index < n; index += get_global_size(0)) {
    // Initialize channel_in, computed in the loop below, with intermediate
    // computations used to compute the spatial indices.
    int_tp c_im = index;
    // Calculate d_im (image dimensions).
    for (int_tp i = num_axes - 1; i >= 0; --i) {
      d_im[i] = c_im % shared_im_shape[i + 1] + shared_pad[i];
      c_im /= shared_im_shape[i + 1];
    }
    // Calculate col start/end indices.
    bool done = false;
    for (int_tp i = 0; i < num_axes; ++i) {
      const int_tp kernel_extent = shared_dilation[i]
          * (shared_kernel_shape[i] - 1) + 1;
      d_col_start[i] = d_col_iter[i] =
          (d_im[i] < kernel_extent) ?
              0 : (d_im[i] - kernel_extent) / shared_stride[i] + 1;
      d_col_end[i] = min(d_im[i] / shared_stride[i] + 1,
                         shared_col_shape[i + 1]);
      if (d_col_start[i] >= d_col_end[i]) {
        // Skip computation if the dimension is 0 at any spatial axis --
        // final val will be 0.
        data_im[index] = 0;
        done = true;
        break;  // for (int_tp i = 0; i < num_axes; ++i)
      }
    }
    if (!done) {
      // Loop over the col to compute the output val.
      Dtype val = 0;
      bool incremented = true;
      bool skip = false;
      do {
        // Compute the final offset.
        int_tp final_offset = 0;
        int_tp kernel_shape_prod = 1;
        int_tp kernel_index;
        for (int_tp i = num_axes - 1; i >= 0; --i) {
          kernel_index = d_im[i] - d_col_iter[i] * shared_stride[i];
          if (kernel_index % shared_dilation[i]) {
            skip = true;
            break;
          } else {
            kernel_index /= shared_dilation[i];
            final_offset += kernel_index * kernel_shape_prod;
            kernel_shape_prod *= shared_kernel_shape[i];
          }
        }
        if (!skip) {
          final_offset += kernel_shape_prod * c_im;
          for (int_tp i = 0; i < num_axes; ++i) {
            final_offset *= shared_col_shape[i + 1];
            final_offset += d_col_iter[i];
          }
          val += data_col[data_col_off + final_offset];
        }
        skip = false;
        incremented = false;
        for (int_tp i = num_axes - 1; i >= 0; --i) {
          const int_tp d_max = d_col_end[i];
          if (d_col_iter[i] == d_max - 1) {
            d_col_iter[i] = d_col_start[i];
          } else {  // d_col_iter[i] < d_max - 1
            ++d_col_iter[i];
            incremented = true;
            break;  // for (int_tp i = num_axes - 1; i >= 0; --i)
          }
        }  // for (int_tp i = num_axes - 1; i >= 0; --i)
      } while (incremented);
      data_im[data_im_off + index] = val;
    }
  }
}