1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
/*
Copyright (c) 2013, Taiga Nomi
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the <organization> nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "tiny_dnn/util/util.h"
#include <algorithm>
namespace tiny_dnn {
/**
* element-wise operation: ```f(x) = h(scale*x+bias)```
*/
template<typename Activation>
class linear_layer : public feedforward_layer<Activation> {
public:
CNN_USE_LAYER_MEMBERS;
typedef feedforward_layer<Activation> Base;
/**
* @param dim [in] number of elements
* @param scale [in] factor by which to multiply
* @param bias [in] bias term
**/
explicit linear_layer(serial_size_t dim, float_t scale = float_t(1), float_t bias = float_t(0))
: Base({vector_type::data}),
dim_(dim), scale_(scale), bias_(bias) {}
std::vector<shape3d> in_shape() const override {
return {shape3d(dim_, 1, 1) };
}
std::vector<shape3d> out_shape() const override {
return{ shape3d(dim_, 1, 1), shape3d(dim_, 1, 1) };
}
std::string layer_type() const override { return "linear"; }
void forward_propagation(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
const tensor_t& in = *in_data[0];
tensor_t& out = *out_data[0];
tensor_t& a = *out_data[1];
// do nothing
CNN_UNREFERENCED_PARAMETER(out);
// @todo revise the parallelism strategy
for_i(parallelize_, dim_, [&](int i) {
for (serial_size_t sample = 0, sample_count = static_cast<serial_size_t>(in.size()); sample < sample_count; ++sample)
a[sample][i] = scale_ * in[sample][i] + bias_;
});
this->forward_activation(*out_data[0], *out_data[1]);
}
void back_propagation(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
tensor_t& prev_delta = *in_grad[0];
tensor_t& curr_delta = *out_grad[1];
CNN_UNREFERENCED_PARAMETER(in_data);
this->backward_activation(*out_grad[0], *out_data[0], curr_delta);
// @todo revise parallelism strategy
for (serial_size_t sample = 0; sample < static_cast<serial_size_t>(prev_delta.size()); ++sample) {
for_i(parallelize_, dim_, [&](int i) {
prev_delta[sample][i] = curr_delta[sample][i] * scale_;
});
}
}
template <class Archive>
static void load_and_construct(Archive & ar, cereal::construct<linear_layer> & construct) {
serial_size_t dim;
float_t scale, bias;
ar(cereal::make_nvp("in_size", dim), cereal::make_nvp("scale", scale), cereal::make_nvp("bias", bias));
construct(dim, scale, bias);
}
template <class Archive>
void serialize(Archive & ar) {
layer::serialize_prolog(ar);
ar(cereal::make_nvp("in_size", dim_), cereal::make_nvp("scale", scale_), cereal::make_nvp("bias", bias_));
}
protected:
serial_size_t dim_;
float_t scale_, bias_;
};
} // namespace tiny_dnn
|