1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
/*
Copyright (c) 2013, Taiga Nomi
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the <organization> nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <iostream>
#include "tiny_dnn/tiny_dnn.h"
using namespace tiny_dnn;
using namespace tiny_dnn::activation;
///////////////////////////////////////////////////////////////////////////////
// recongnition on MNIST similar to LaNet-5 adding deconvolution
void deconv_lanet(network<graph>& nn,
std::vector<label_t> train_labels,
std::vector<label_t> test_labels,
std::vector<vec_t> train_images,
std::vector<vec_t> test_images)
{
// connection table [Y.Lecun, 1998 Table.1]
#define O true
#define X false
static const bool tbl[] = {
O, X, X, X, O, O, O, X, X, O, O, O, O, X, O, O,
O, O, X, X, X, O, O, O, X, X, O, O, O, O, X, O,
O, O, O, X, X, X, O, O, O, X, X, O, X, O, O, O,
X, O, O, O, X, X, O, O, O, O, X, X, O, X, O, O,
X, X, O, O, O, X, X, O, O, O, O, X, O, O, X, O,
X, X, X, O, O, O, X, X, O, O, O, O, X, O, O, O
};
#undef O
#undef X
// declare nodes
input_layer i1(shape3d(32,32,1));
convolutional_layer<tan_h> c1(32, 32, 5, 1, 6);
average_pooling_layer<tan_h> p1(28, 28, 6, 2);
deconvolutional_layer<tan_h> d1(14, 14, 5, 6, 16, connection_table(tbl, 6, 16));
average_pooling_layer<tan_h> p2(18, 18, 16, 2);
convolutional_layer<tan_h> c2(9, 9, 9, 16, 120);
fully_connected_layer<tan_h> f1(120, 10);
// connect them to graph
i1 << c1 << p1 << d1 << p2 << c2 << f1;
construct_graph(nn, { &i1 }, { &f1 });
std::cout << "start training" << std::endl;
progress_display disp((unsigned long)train_images.size());
timer t;
int minibatch_size = 10;
int num_epochs = 30;
adagrad optimizer;
optimizer.alpha *= static_cast<tiny_dnn::float_t>(std::sqrt(minibatch_size));
// create callback
auto on_enumerate_epoch = [&](){
std::cout << t.elapsed() << "s elapsed." << std::endl;
tiny_dnn::result res = nn.test(test_images, test_labels);
std::cout << res.num_success << "/" << res.num_total << std::endl;
disp.restart((unsigned long)train_images.size());
t.restart();
};
auto on_enumerate_minibatch = [&](){
disp += minibatch_size;
};
// training
nn.train<mse>(optimizer, train_images, train_labels, minibatch_size,
num_epochs, on_enumerate_minibatch, on_enumerate_epoch);
std::cout << "end training." << std::endl;
// test and show results
nn.test(test_images, test_labels).print_detail(std::cout);
// save networks
std::ofstream ofs("deconv_lanet_weights");
ofs << nn;
}
///////////////////////////////////////////////////////////////////////////////
// Deconcolutional Auto-encoder
void deconv_ae(network<sequential>& nn,
std::vector<label_t> train_labels,
std::vector<label_t> test_labels,
std::vector<vec_t> train_images,
std::vector<vec_t> test_images) {
// construct nets
nn << convolutional_layer<tan_h>(32, 32, 5, 1, 6)
<< average_pooling_layer<tan_h>(28, 28, 6, 2)
<< convolutional_layer<tan_h>(14, 14, 3, 6, 16)
<< deconvolutional_layer<tan_h>(12, 12, 3, 16, 6)
<< average_unpooling_layer<tan_h>(14, 14, 6, 2)
<< deconvolutional_layer<tan_h>(28, 28, 5, 6, 1);
// load train-data and make corruption
std::vector<vec_t> training_images_corrupted(train_images);
for (auto& d : training_images_corrupted) {
d = corrupt(move(d), tiny_dnn::float_t(0.1), tiny_dnn::float_t(0.0)); // corrupt 10% data
}
gradient_descent optimizer;
// learning deconcolutional Auto-encoder
nn.train<mse>(optimizer, training_images_corrupted, train_images);
std::cout << "end training." << std::endl;
// save networks
std::ofstream ofs("deconv_ae_weights");
ofs << nn;
}
///////////////////////////////////////////////////////////////////////////////
// ENet
void enet(network<graph>& nn,
std::vector<label_t> train_labels,
std::vector<label_t> test_labels,
std::vector<vec_t> train_images,
std::vector<vec_t> test_images) {
// initial module
input_layer ii0(shape3d(32,32,1));
convolutional_layer<tan_h> ic1(32, 32, 3, 1, 8, padding::same, true, 2, 2);
max_pooling_layer<tan_h> ip1(32, 32, 1, 2);
convolutional_layer<tan_h> ic2(16, 16, 1, 1, 8, padding::same);
concat_layer icc1(2, 16*16*8);
ii0 << ip1 << ic2;
ii0 << ic1;
(ic2, ic1) << icc1;
// bottle neck module 1
max_pooling_layer<tan_h> b1p1(16, 16, 16, 2);
convolutional_layer<tan_h> b1c2(8, 8, 1, 16, 32, padding::same);
convolutional_layer<tan_h> b1c1(16, 16, 1, 16, 32, padding::same);
convolutional_layer<tan_h> b1c3(16, 16, 2, 32, 32, padding::same, true, 2, 2);
convolutional_layer<tan_h> b1c4(8, 8, 1, 32, 32, padding::same);
concat_layer b1cc1(2, 8*8*32);
icc1 << b1p1 << b1c2;
icc1 << b1c1 << b1c3 << b1c4;
(b1c2, b1c4) << b1cc1;
// bottle neck module 2
deconvolutional_layer<tan_h> b2d1(8, 8, 1, 64, 16, padding::same, true, 2, 2);
deconvolutional_layer<tan_h> b2d2(16, 16, 1, 16, 1, padding::same, true, 2, 2);
fully_connected_layer<tan_h> f1(32*32, 10);
b1cc1 << b2d1 << b2d2 << f1;
// construct whole network
construct_graph(nn, { &ii0 }, { &f1 });
// load train-data and make corruption
std::cout << "start training" << std::endl;
progress_display disp((unsigned long)train_images.size());
timer t;
int minibatch_size = 10;
int num_epochs = 30;
adagrad optimizer;
optimizer.alpha *= tiny_dnn::float_t(std::sqrt(minibatch_size));
// create callback
auto on_enumerate_epoch = [&](){
std::cout << t.elapsed() << "s elapsed." << std::endl;
tiny_dnn::result res = nn.test(test_images, test_labels);
std::cout << res.num_success << "/" << res.num_total << std::endl;
disp.restart((unsigned long)train_images.size());
t.restart();
};
auto on_enumerate_minibatch = [&](){
disp += minibatch_size;
};
// training
nn.train<mse>(optimizer, train_images, train_labels, minibatch_size,
num_epochs, on_enumerate_minibatch, on_enumerate_epoch);
std::cout << "end training." << std::endl;
// test and show results
nn.test(test_images, test_labels).print_detail(std::cout);
// save networks
std::ofstream ofs("deconv_lanet_weights");
ofs << nn;
}
void train(std::string data_dir_path, std::string experiment) {
std::cout << "load traing and testing data..." << std::endl;
// load MNIST dataset
std::vector<label_t> train_labels, test_labels;
std::vector<vec_t> train_images, test_images;
parse_mnist_labels(data_dir_path+"/train-labels.idx1-ubyte",
&train_labels);
parse_mnist_images(data_dir_path+"/train-images.idx3-ubyte",
&train_images, -1.0, 1.0, 2, 2);
parse_mnist_labels(data_dir_path+"/t10k-labels.idx1-ubyte",
&test_labels);
parse_mnist_images(data_dir_path+"/t10k-images.idx3-ubyte",
&test_images, -1.0, 1.0, 2, 2);
// specify loss-function and learning strategy
network<sequential> nn_s;
network<graph> nn_g;
if (experiment == "deconv_lanet")
deconv_lanet(nn_g, train_labels, test_labels, train_images, test_images); // recongnition on MNIST similar to LaNet-5 adding deconvolution
else if (experiment == "deconv_ae")
deconv_ae(nn_s, train_labels, test_labels, train_images, test_images); // Deconcolution Auto-encoder on MNIST
else if (experiment == "enet")
enet(nn_g, train_labels, test_labels, train_images, test_images); // Bottle neck module based ENet
}
int main(int argc, char **argv) {
if (argc != 3) {
std::cerr << "Usage : " << argv[0]
<< " path_to_data (example:../data) (example:deconv_lanet, deconv_ae or enet)" << std::endl;
return -1;
}
train(argv[1], argv[2]);
}
|