File: visual.cpp

package info (click to toggle)
tiny-dnn 1.0.0a3%2Bds-5
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 4,784 kB
  • sloc: cpp: 16,471; ansic: 11,829; lisp: 3,682; python: 3,422; makefile: 208
file content (152 lines) | stat: -rw-r--r-- 5,691 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/*
    Copyright (c) 2013, Taiga Nomi
    All rights reserved.

    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions are met:
    * Redistributions of source code must retain the above copyright
    notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
    notice, this list of conditions and the following disclaimer in the
    documentation and/or other materials provided with the distribution.
    * Neither the name of the <organization> nor the
    names of its contributors may be used to endorse or promote products
    derived from this software without specific prior written permission.

    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
    EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
    WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
    DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
    DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
    LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
    ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <iostream>
#include "tiny_dnn/tiny_dnn.h"

using namespace tiny_dnn;
using namespace tiny_dnn::activation;
using namespace std;

// rescale output to 0-100
template <typename Activation>
double rescale(double x) {
    Activation a;
    return 100.0 * (x - a.scale().first) / (a.scale().second - a.scale().first);
}

void convert_image(const std::string& imagefilename,
    double minv,
    double maxv,
    int w,
    int h,
    vec_t& data) {

    image<> img(imagefilename, image_type::grayscale);
    image<> resized = resize_image(img, w, h);

    // mnist dataset is "white on black", so negate required
    std::transform(resized.begin(), resized.end(), std::back_inserter(data),
        [=](uint8_t c) { return (255 - c) * (maxv - minv) / 255.0 + minv; });
}


void construct_net(network<sequential>& nn) {
    // construct nets
    nn << convolutional_layer<tan_h>(32, 32, 5, 1, 6)
       << average_pooling_layer<activation::identity>(28, 28, 6, 2)
       << convolutional_layer<tan_h>(14, 14, 5, 6, 16)
       << deconvolutional_layer<tan_h>(10, 10, 5, 16, 6)
       << average_unpooling_layer<activation::identity>(14, 14, 6, 2)
       << deconvolutional_layer<tan_h>(28, 28, 5, 6, 1);
}

void train_network(network<sequential> nn, const string& train_dir_path) {
    // load train-data and make corruption
    // load MNIST dataset
    std::cout << "load traing and testing data..." << std::endl;
    std::vector<label_t> train_labels, test_labels;
    std::vector<vec_t> train_images, test_images;

    parse_mnist_labels(train_dir_path + "/train-labels.idx1-ubyte", &train_labels);
    parse_mnist_images(train_dir_path + "/train-images.idx3-ubyte", &train_images, -1.0, 1.0, 2, 2);
    parse_mnist_labels(train_dir_path + "/t10k-labels.idx1-ubyte", &test_labels);
    parse_mnist_images(train_dir_path + "/t10k-images.idx3-ubyte", &test_images, -1.0, 1.0, 2, 2);
    std::vector<vec_t> training_images_corrupted(train_images);

    for (auto& d : training_images_corrupted) {
        d = corrupt(move(d), 0.1f, 0.0f); // corrupt 10% data
    }

    gradient_descent optimizer;

    std::cout << "start training deconvolutional auto-encoder..." << std::endl;

    // learning deconcolutional Auto-encoder
    nn.train<mse>(optimizer, training_images_corrupted, train_images);

    std::cout << "end training." << std::endl;

    // save networks
    std::ofstream ofs("deconv_ae_weights");
    ofs << nn;
}

void recognize(const std::string& dictionary, const std::string& filename, const string& train_dir_path = "") {
    network<sequential> nn;

    construct_net(nn);
    // training
    if (train_dir_path != "")
        train_network(nn, train_dir_path);
    else
        cout << "make sure you have already got a trained model" << std::endl;

    // load nets
    ifstream ifs(dictionary.c_str());
    ifs >> nn;

    // convert imagefile to vec_t
    vec_t data;
    convert_image(filename, -1.0, 1.0, 32, 32, data);

    std::cout << "start predicting on single image..." << std::endl;

    // recognize
    auto res = nn.predict(data);
    vector<pair<double, int> > scores;

    // sort & print top-3
    for (int i = 0; i < 10; i++)
        scores.emplace_back(rescale<tan_h>(res[i]), i);

    sort(scores.begin(), scores.end(), greater<pair<double, int>>());

    for (int i = 0; i < 3; i++)
        cout << scores[i].second << "," << scores[i].first << endl;

    // visualize outputs of each layer
    for (size_t i = 0; i < nn.layer_size(); i++) {
        auto out_img = nn[i]->output_to_image();
        auto filename = "layer_" + std::to_string(i) + ".png";
        out_img.save(filename);
    }
    // visualize filter shape of first convolutional layer
    auto weightc = nn.at<convolutional_layer<tan_h>>(0).weight_to_image();
    weightc.save("weights.png");
}

int main(int argc, char** argv) {
    if (argc < 2) {
        cout << "please specify training data path and testing image file" << std::endl;
        return 0;
    }
    else if (argc == 2) {
        recognize("deconv_ae_weights", argv[1]);
    }
    else
        recognize("deconv_ae_weights", argv[1], argv[2]);
}