1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
/*
Copyright (c) 2016, Taiga Nomi, Edgar Riba
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the <organization> nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <map>
#include <string>
#include <vector>
#include <utility>
#include "gtest/gtest.h"
#include "testhelper.h"
#include "tiny_dnn/tiny_dnn.h"
#if defined(USE_OPENCL) || defined(USE_CUDA)
#include "third_party/CLCudaAPI/clpp11.h"
#endif // defined(USE_OPENCL) || defined(USE_CUDA)
namespace tiny_dnn {
#if defined(USE_OPENCL) || defined(USE_CUDA)
device_t device_type(size_t *platform, size_t *device) {
// check which platforms are available
auto platforms = CLCudaAPI::GetAllPlatforms();
// if no platforms - return -1
if (platforms.size() == 0) {
return device_t::NONE;
}
std::array<std::string, 2> devices_order = {"GPU", "CPU"};
std::map<std::string, device_t>
devices_t_order = {std::make_pair("GPU", device_t::GPU),
std::make_pair("CPU", device_t::CPU)};
for (auto d_type : devices_order)
for (auto p = platforms.begin(); p != platforms.end(); ++p)
for (size_t d = 0; d < p->NumDevices(); ++d) {
auto dev = CLCudaAPI::Device(*p, d);
if (dev.Type() == d_type) {
*platform = p - platforms.begin();
*device = d;
return devices_t_order[d_type];
}
}
// no CPUs or GPUs
return device_t::NONE;
}
#define TINY_DNN_GET_DEVICE_AND_PLATFORM \
size_t cl_platform = 0, cl_device = 0; \
device_t device = device_type(&cl_platform, &cl_device);
#else
#define TINY_DNN_GET_DEVICE_AND_PLATFORM \
size_t cl_platform = 0, cl_device = 0; \
device_t device = device_t::NONE;
#endif // defined(USE_OPENCL) || defined(USE_CUDA)
/*
TEST(core, platforms_and_devices) {
// Since Singleton has a general state,
// in each test we reset program register
ProgramManager::getInstance().reset();
//check which platforms are available and which devices
auto platforms = CLCudaAPI::GetAllPlatforms();
EXPECT_LT(0, platforms.size());
for (auto &p: platforms) {
EXPECT_LT(0, p.NumDevices());
for (size_t d = 0; d < p.NumDevices(); ++d) {
auto dev = CLCudaAPI::Device(p, d);
std::cout << "Device " << d << " is " << dev.Type() << "\n";
}
}
}*/
TEST(core, device) {
// Since Singleton has a general state,
// in each test we reset program register
ProgramManager::getInstance().reset();
// CPU and GPU devices are instantiated
Device my_cpu_device(device_t::CPU);
TINY_DNN_GET_DEVICE_AND_PLATFORM;
if (device != device_t::NONE) {
Device my_gpu_device(device, cl_platform, cl_device);
}
}
TEST(core, add_bad_device) {
// A simple CPU device cannot register an op.
// A warning is expected telling the user to use
// more parameters when device is created.
// Since Singleton has a general state,
// in each test we reset program register
ProgramManager::getInstance().reset();
Device my_gpu_device(device_t::CPU);
convolutional_layer<sigmoid>
l(5, 5, 3, 1, 2, padding::valid, true, 1, 1, backend_t::libdnn);
EXPECT_THROW(my_gpu_device.registerOp(l), nn_error);
}
TEST(core, add_bad_layer) {
// A GPU device cannot register an op with non-OpenCL engine.
// A warning is expected telling the user to redefine the op engine.
// Since Singleton has a general state,
// in each test we reset program register
ProgramManager::getInstance().reset();
TINY_DNN_GET_DEVICE_AND_PLATFORM;
if (device != device_t::NONE) {
Device my_gpu_device(device, cl_platform, cl_device);
convolutional_layer<sigmoid>
l(5, 5, 3, 1, 2, padding::valid, true, 1, 1, backend_t::internal);
EXPECT_THROW(my_gpu_device.registerOp(l), nn_error);
}
}
TEST(core, device_add_op) {
// An Op with OpenCL engine is registered to
// a GPU device which will compile its program, and
// will place it to the general register.
// Since Singleton has a general state,
// in each test we reset program register
ProgramManager::getInstance().reset();
TINY_DNN_GET_DEVICE_AND_PLATFORM;
if (device != device_t::NONE) {
Device my_gpu_device(device, cl_platform, cl_device);
convolutional_layer<sigmoid>
l(5, 5, 3, 1, 2, padding::valid, true, 1, 1, backend_t::libdnn);
//max_pooling_layer<identity> l(4, 4, 1, 2, 2, core::backend_t::opencl);
ASSERT_EQ(ProgramManager::getInstance().num_programs(),
static_cast<serial_size_t>(0));
#if defined(USE_OPENCL) || defined(USE_CUDA)
// first time op registration: OK
my_gpu_device.registerOp(l);
ASSERT_EQ(ProgramManager::getInstance().num_programs(),
static_cast<serial_size_t>(1));
// second time op registraion: we expect that Op it's not
// registrated since it's already there.
my_gpu_device.registerOp(l);
ASSERT_EQ(ProgramManager::getInstance().num_programs(),
static_cast<serial_size_t>(1));
#endif
}
}
TEST(core, ocl_conv) {
// Since Singleton has a general state,
// in each test we reset program register
ProgramManager::getInstance().reset();
TINY_DNN_GET_DEVICE_AND_PLATFORM;
if (device != device_t::NONE) {
Device my_gpu_device(device, cl_platform, cl_device);
convolutional_layer<sigmoid>
l(5, 5, 3, 1, 2, padding::valid, true, 1, 1, backend_t::libdnn);
// first time op registration: OK
my_gpu_device.registerOp(l);
auto create_simple_tensor = [](size_t vector_size) {
return tensor_t(1, vec_t(vector_size));
};
// create simple tensors that wrap the
// payload vectors of the correct size
tensor_t in_tensor = create_simple_tensor(25)
, out_tensor = create_simple_tensor(18)
, a_tensor = create_simple_tensor(18)
, weight_tensor = create_simple_tensor(18)
, bias_tensor = create_simple_tensor(2);
// short-hand references to the payload vectors
vec_t &in = in_tensor[0]
, &out = out_tensor[0]
, &weight = weight_tensor[0];
ASSERT_EQ(l.in_shape()[1].size(),
static_cast<serial_size_t>(18)); // weight
uniform_rand(in.begin(), in.end(), -1.0, 1.0);
std::vector<tensor_t *> in_data, out_data;
in_data.push_back(&in_tensor);
in_data.push_back(&weight_tensor);
in_data.push_back(&bias_tensor);
out_data.push_back(&out_tensor);
out_data.push_back(&a_tensor);
l.setup(false);
{
l.forward_propagation(in_data, out_data);
for (auto o : out)
EXPECT_DOUBLE_EQ(o, tiny_dnn::float_t(0.5));
}
weight[0] = 0.3; weight[1] = 0.1; weight[2] = 0.2;
weight[3] = 0.0; weight[4] =-0.1; weight[5] =-0.1;
weight[6] = 0.05; weight[7] =-0.2; weight[8] = 0.05;
weight[9] = 0.0; weight[10] =-0.1; weight[11] = 0.1;
weight[12] = 0.1; weight[13] =-0.2; weight[14] = 0.3;
weight[15] = 0.2; weight[16] =-0.3; weight[17] = 0.2;
in[0] = 3; in[1] = 2; in[2] = 1; in[3] = 5; in[4] = 2;
in[5] = 3; in[6] = 0; in[7] = 2; in[8] = 0; in[9] = 1;
in[10] = 0; in[11] = 6; in[12] = 1; in[13] = 1; in[14] = 10;
in[15] = 3; in[16] =-1; in[17] = 2; in[18] = 9; in[19] = 0;
in[20] = 1; in[21] = 2; in[22] = 1; in[23] = 5; in[24] = 5;
{
l.forward_propagation(in_data, out_data);
EXPECT_NEAR(0.4875026, out[0], 1E-5);
EXPECT_NEAR(0.8388910, out[1], 1E-5);
EXPECT_NEAR(0.8099984, out[2], 1E-5);
EXPECT_NEAR(0.7407749, out[3], 1E-5);
EXPECT_NEAR(0.5000000, out[4], 1E-5);
EXPECT_NEAR(0.1192029, out[5], 1E-5);
EXPECT_NEAR(0.5986877, out[6], 1E-5);
EXPECT_NEAR(0.7595109, out[7], 1E-5);
EXPECT_NEAR(0.6899745, out[8], 1E-5);
}
}
}
} // namespace tiny-dnn
|