1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
/*
Copyright (c) 2013, Taiga Nomi
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the <organization> nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "gtest/gtest.h"
#include "testhelper.h"
#include "tiny_dnn/tiny_dnn.h"
namespace tiny_dnn {
/*
TEST(deconvolutional, setup_tiny) {
deconvolutional_layer<sigmoid> l(2, 2, 3, 1, 2,
padding::valid, true, 1, 1, backend_t::tiny_dnn);
EXPECT_EQ(l.parallelize(), true); // if layer can be parallelized
EXPECT_EQ(l.in_channels(), 3); // num of input tensors
EXPECT_EQ(l.out_channels(), 2); // num of output tensors
EXPECT_EQ(l.in_data_size(), 4); // size of input tensors
EXPECT_EQ(l.out_data_size(), 32); // size of output tensors
EXPECT_EQ(l.in_data_shape().size(), 1); // number of inputs shapes
EXPECT_EQ(l.out_data_shape().size(), 1); // num of output shapes
EXPECT_EQ(l.weights().size(), 2); // the wieghts vector size
EXPECT_EQ(l.weights_grads().size(), 2); // the wieghts vector size
EXPECT_EQ(l.inputs().size(), 3); // num of input edges
EXPECT_EQ(l.outputs().size(), 2); // num of outpus edges
EXPECT_EQ(l.in_types().size(), 3); // num of input data types
EXPECT_EQ(l.out_types().size(), 2); // num of output data types
EXPECT_EQ(l.fan_in_size(), 9); // num of incoming connections
EXPECT_EQ(l.fan_out_size(), 18); // num of outgoing connections
EXPECT_STREQ(l.layer_type().c_str(), "deconv"); // string with layer type
EXPECT_TRUE(l.backend_type() == backend_t::tiny_dnn);
}
#ifdef CNN_USE_NNPACK
TEST(deconvolutional, setup_nnp) {
deconvolutional_layer<sigmoid> l(2, 2, 3, 1, 2,
padding::valid, true, 1, 1, backend_t::nnpack);
EXPECT_EQ(l.parallelize(), true); // if layer can be parallelized
EXPECT_EQ(l.in_channels(), 3); // num of input tensors
EXPECT_EQ(l.out_channels(), 2); // num of output tensors
EXPECT_EQ(l.in_data_size(), 4); // size of input tensors
EXPECT_EQ(l.out_data_size(), 32); // size of output tensors
EXPECT_EQ(l.in_data_shape().size(), 1); // number of inputs shapes
EXPECT_EQ(l.out_data_shape().size(), 1); // num of output shapes
EXPECT_EQ(l.weights().size(), 2); // the wieghts vector size
EXPECT_EQ(l.weights_grads().size(), 2); // the wieghts vector size
EXPECT_EQ(l.inputs().size(), 3); // num of input edges
EXPECT_EQ(l.outputs().size(), 2); // num of outpus edges
EXPECT_EQ(l.in_types().size(), 3); // num of input data types
EXPECT_EQ(l.out_types().size(), 2); // num of output data types
EXPECT_EQ(l.fan_in_size(), 9); // num of incoming connections
EXPECT_EQ(l.fan_out_size(), 18); // num of outgoing connections
EXPECT_STREQ(l.layer_type().c_str(), "deconv"); // string with layer type
EXPECT_TRUE(l.backend_type() == backend_t::nnpack);
}
#endif
TEST(deconvolutional, fprop) {
typedef network<sequential> CNN;
CNN nn;
deconvolutional_layer<sigmoid> l(2, 2, 3, 1, 2);
// layer::forward_propagation expects tensors, even if we feed only one input at a time
auto create_simple_tensor = [](size_t vector_size) {
return tensor_t(1, vec_t(vector_size));
};
// create simple tensors that wrap the payload vectors of the correct size
tensor_t in_tensor = create_simple_tensor(4)
, out_tensor = create_simple_tensor(32)
, a_tensor = create_simple_tensor(32)
, weight_tensor = create_simple_tensor(18)
, bias_tensor = create_simple_tensor(2);
// short-hand references to the payload vectors
vec_t &in = in_tensor[0]
, &out = out_tensor[0]
, &weight = weight_tensor[0];
ASSERT_EQ(l.in_shape()[1].size(), 18); // weight
uniform_rand(in.begin(), in.end(), -1.0, 1.0);
std::vector<tensor_t*> in_data, out_data;
in_data.push_back(&in_tensor);
in_data.push_back(&weight_tensor);
in_data.push_back(&bias_tensor);
out_data.push_back(&out_tensor);
out_data.push_back(&a_tensor);
l.setup(false);
{
l.forward_propagation(in_data, out_data);
for (auto o: out)
EXPECT_DOUBLE_EQ(o, (tiny_dnn::float_t)0.5);
}
weight[0] = 0.3; weight[1] = 0.1; weight[2] = 0.2;
weight[3] = 0.0; weight[4] =-0.1; weight[5] =-0.1;
weight[6] = 0.05; weight[7] =-0.2; weight[8] = 0.05;
weight[9] = 0.0; weight[10] =-0.1; weight[11] = 0.1;
weight[12] = 0.1; weight[13] =-0.2; weight[14] = 0.3;
weight[15] = 0.2; weight[16] =-0.3; weight[17] = 0.2;
in[0] = 3; in[1] = 2;
in[2] = 3; in[3] = 0;
{
l.forward_propagation(in_data, out_data);
EXPECT_NEAR(0.7109495, out[0], 1E-5);
EXPECT_NEAR(0.7109495, out[1], 1E-5);
EXPECT_NEAR(0.6899745, out[2], 1E-5);
EXPECT_NEAR(0.5986877, out[3], 1E-5);
EXPECT_NEAR(0.7109495, out[4], 1E-5);
EXPECT_NEAR(0.5000000, out[5], 1E-5);
EXPECT_NEAR(0.5249792, out[6], 1E-5);
EXPECT_NEAR(0.4501660, out[7], 1E-5);
EXPECT_NEAR(0.5374298, out[8], 1E-5);
EXPECT_NEAR(0.3100255, out[9], 1E-5);
EXPECT_NEAR(0.3658644, out[10], 1E-5);
EXPECT_NEAR(0.5249791, out[11], 1E-5);
EXPECT_NEAR(0.5374298, out[12], 1E-5);
EXPECT_NEAR(0.3543437, out[13], 1E-5);
EXPECT_NEAR(0.5374298, out[14], 1E-5);
EXPECT_NEAR(0.5000000, out[15], 1E-5);
}
}
TEST(deconvolutional, fprop2) {
typedef network<sequential> CNN;
CNN nn;
deconvolutional_layer<sigmoid> l(2, 2, 3, 1, 2, padding::same);
auto create_simple_tensor = [](size_t vector_size) {
return tensor_t(1, vec_t(vector_size));
};
tensor_t in_tensor = create_simple_tensor(4)
, out_tensor = create_simple_tensor(32)
, a_tensor = create_simple_tensor(32)
, weight_tensor = create_simple_tensor(18)
, bias_tensor = create_simple_tensor(2);
// short-hand references to the payload vectors
vec_t &in = in_tensor[0]
, &out = out_tensor[0]
, &weight = weight_tensor[0];
ASSERT_EQ(l.in_shape()[1].size(), 18); // weight
uniform_rand(in.begin(), in.end(), -1.0, 1.0);
std::vector<tensor_t*> in_data, out_data;
in_data.push_back(&in_tensor);
in_data.push_back(&weight_tensor);
in_data.push_back(&bias_tensor);
out_data.push_back(&out_tensor);
out_data.push_back(&a_tensor);
l.setup(false);
{
l.forward_propagation(in_data, out_data);
for (auto o: out)
EXPECT_DOUBLE_EQ(o, (tiny_dnn::float_t)0.5);
}
weight[0] = 0.3; weight[1] = 0.1; weight[2] = 0.2;
weight[3] = 0.0; weight[4] =-0.1; weight[5] =-0.1;
weight[6] = 0.05; weight[7] =-0.2; weight[8] = 0.05;
weight[9] = 0.0; weight[10] =-0.1; weight[11] = 0.1;
weight[12] = 0.1; weight[13] =-0.2; weight[14] = 0.3;
weight[15] = 0.2; weight[16] =-0.3; weight[17] = 0.2;
in[0] = 3; in[1] = 2;
in[2] = 3; in[3] = 0;
{
l.forward_propagation(in_data, out_data);
EXPECT_NEAR(0.5000000, out[0], 1E-5);
EXPECT_NEAR(0.5249792, out[1], 1E-5);
EXPECT_NEAR(0.3100255, out[2], 1E-5);
EXPECT_NEAR(0.3658644, out[3], 1E-5);
}
}
TEST(deconvolutional, gradient_check) { // tanh - mse
network<sequential> nn;
nn << deconvolutional_layer<tan_h>(2, 2, 3, 1, 1);
const auto test_data = generate_gradient_check_data(nn.in_data_size());
nn.init_weight();
EXPECT_TRUE(nn.gradient_check<mse>(test_data.first, test_data.second, epsilon<float_t>(), GRAD_CHECK_ALL));
}
TEST(deconvolutional, gradient_check2) { // sigmoid - mse
network<sequential> nn;
nn << deconvolutional_layer<sigmoid>(2, 2, 3, 1, 1);
const auto test_data = generate_gradient_check_data(nn.in_data_size());
nn.init_weight();
EXPECT_TRUE(nn.gradient_check<mse>(test_data.first, test_data.second, epsilon<float_t>(), GRAD_CHECK_ALL));
}
TEST(deconvolutional, gradient_check3) { // rectified - mse
network<sequential> nn;
nn << deconvolutional_layer<rectified_linear>(2, 2, 3, 1, 1);
const auto test_data = generate_gradient_check_data(nn.in_data_size());
nn.init_weight();
EXPECT_TRUE(nn.gradient_check<mse>(test_data.first, test_data.second, epsilon<float_t>(), GRAD_CHECK_ALL));
}
TEST(deconvolutional, gradient_check4) { // identity - mse
network<sequential> nn;
nn << deconvolutional_layer<identity>(2, 2, 3, 1, 1);
const auto test_data = generate_gradient_check_data(nn.in_data_size());
nn.init_weight();
EXPECT_TRUE(nn.gradient_check<mse>(test_data.first, test_data.second, epsilon<float_t>(), GRAD_CHECK_ALL));
}
TEST(deconvolutional, gradient_check5) { // sigmoid - cross-entropy
network<sequential> nn;
nn << deconvolutional_layer<sigmoid>(2, 2, 3, 1, 1);
const auto test_data = generate_gradient_check_data(nn.in_data_size());
nn.init_weight();
EXPECT_TRUE(nn.gradient_check<cross_entropy>(test_data.first, test_data.second, epsilon<float_t>(), GRAD_CHECK_ALL));
}
TEST(deconvolutional, read_write)
{
deconvolutional_layer<tan_h> l1(2, 2, 3, 1, 1);
deconvolutional_layer<tan_h> l2(2, 2, 3, 1, 1);
l1.init_weight();
l2.init_weight();
serialization_test(l1, l2);
}
TEST(deconvolutional, read_write2) {
#define O true
#define X false
static const bool connection[] = {
O, X, X, X, O, O,
O, O, X, X, X, O,
O, O, O, X, X, X
};
#undef O
#undef X
deconvolutional_layer<tan_h> layer1(14, 14, 5, 3, 6, connection_table(connection, 3, 6));
deconvolutional_layer<tan_h> layer2(14, 14, 5, 3, 6, connection_table(connection, 3, 6));
layer1.init_weight();
layer2.init_weight();
serialization_test(layer1, layer2);
}
*/
} // namespace tiny-dnn
|