1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
|
/*
Copyright (c) 2013, Taiga Nomi
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the <organization> nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "gtest/gtest.h"
#include "testhelper.h"
#include "tiny_dnn/tiny_dnn.h"
namespace tiny_dnn {
using namespace tiny_dnn::activation;
using namespace tiny_dnn::layers;
class test_fc_layer : public fully_connected_layer<tan_h> {
public:
typedef fully_connected_layer<tan_h> base;
test_fc_layer() : base(10, 10) {
++counter();
}
test_fc_layer(const test_fc_layer& fc) : base(10, 10) {
++counter();
}
virtual ~test_fc_layer() {
--counter();
}
test_fc_layer(test_fc_layer&& r) : base(std::move(r)){
++counter();
}
static int& counter() { static int i = 0; return i; }
};
TEST(network, construct_sequential_by_local_variables) {
{
network<sequential> net;
test_fc_layer fc1, fc2;
net << fc1 << fc2;
ASSERT_EQ(test_fc_layer::counter(), 2);
}
ASSERT_EQ(test_fc_layer::counter(), 0);
}
TEST(network, construct_sequential_by_temporary_variables) {
{
network<sequential> net;
net << test_fc_layer() << test_fc_layer();
ASSERT_EQ(test_fc_layer::counter(), 2);
}
ASSERT_EQ(test_fc_layer::counter(), 0);
}
TEST(network, construct_sequential_by_shared_ptr) {
{
network<sequential> net;
auto fc1 = std::make_shared<test_fc_layer>();
auto fc2 = std::make_shared<test_fc_layer>();
net << fc1 << fc2;
ASSERT_EQ(test_fc_layer::counter(), 2);
}
ASSERT_EQ(test_fc_layer::counter(), 0);
}
TEST(network, construct_multi_by_local_variables) {
network<sequential> net;
conv<tan_h> conv1(32, 32, 5, 1, 6, padding::same);
conv<sigmoid> conv2(32, 32, 7, 6, 12, padding::same);
max_pool<relu> pool1(32, 32, 12, 2);
lrn_layer<identity> lrn(16, 16, 4, 12);
dropout dp(16*16*12, 0.5);
fc<softmax> full(16*16*12, 1);
net << conv1 << conv2 << pool1 << lrn << dp << full;
}
TEST(network, construct_multi_by_temporary_variables) {
network<sequential> net;
net << conv<tan_h>(32, 32, 5, 1, 6, padding::same)
<< conv<sigmoid>(32, 32, 7, 6, 12, padding::same)
<< max_pool<relu>(32, 32, 12, 2)
<< lrn_layer<identity>(16, 16, 4, 12)
<< dropout(16 * 16 * 12, 0.5)
<< fc<softmax>(16 * 16 * 12, 1);
}
TEST(network, in_dim) {
network<sequential> net;
convolutional_layer<identity> c1(32, 32, 5, 3, 6, padding::same);
max_pooling_layer<identity> p1(32, 32, 6, 2);
net << c1 << p1;
EXPECT_EQ(c1.in_data_size(), net.in_data_size());
}
TEST(network, out_dim) {
network<sequential> net;
convolutional_layer<identity> c1(32, 32, 5, 3, 6, padding::same);
max_pooling_layer<identity> p1(32, 32, 6, 2);
net << c1 << p1;
EXPECT_EQ(p1.out_data_size(), net.out_data_size());
}
TEST(network, name) {
network<sequential> net1;
network<sequential> net2("foo");
EXPECT_EQ(net1.name(), "");
EXPECT_EQ(net2.name(), "foo");
}
TEST(network, add) {
network<sequential> net;
net << convolutional_layer<identity>(32, 32, 5, 3, 6, padding::same);
EXPECT_EQ(net.depth(), static_cast<serial_size_t>(1));
}
TEST(network, manual_init) {
// initializing weights directly
network<sequential> net;
net << convolutional_layer<identity>(3, 3, 3, 1, 1)
<< fully_connected_layer<softmax>(1, 2, false);
adagrad opt;
vec_t* c1_w = net[0]->weights()[0];
vec_t* c1_b = net[0]->weights()[1];
vec_t* f1_w = net[1]->weights()[0];
EXPECT_EQ(c1_w->size(), static_cast<serial_size_t>(9));
EXPECT_EQ(c1_b->size(), static_cast<serial_size_t>(1));
EXPECT_EQ(f1_w->size(), static_cast<serial_size_t>(2));
*c1_w = { 0,1,2,3,4,5,6,7,8 };
*c1_b = { 1 };
*f1_w = { 1,2 };
// check if the training and predicting works
// https://github.com/tiny-dnn/tiny-dnn/issues/330
net.predict({ 1,1,1,1,1,1,1,1,1 });
net.train<mse, adagrad>(opt, tensor_t{ {1,1,1,1,1,1,1,1,1} }, tensor_t{ {1,2} }, 1, 1);
}
// TODO(nyanp): check out values again since the routine it's a bit sensitive
/*TEST(network, multi_out) {
network<graph> net;
adam optimizer;
size_t tnum = 600;
std::vector<vec_t> data;
std::vector<std::vector<vec_t>> out;
auto in = std::make_shared<input_layer>(shape3d(2,1,1));
auto hidden = std::make_shared<layers::fc<tan_h>>(2,4);
auto out1 = std::make_shared<layers::fc<tan_h>>(4,2);
auto out2 = std::make_shared<layers::fc<tan_h>>(4,2);
in << hidden << out1;
hidden << out2;
for (size_t i = 0; i < tnum; i++) {
bool in[2] = { bernoulli(0.5), bernoulli(0.5) };
// label_t expected = (in[0] ^ in[1]) ? 1 : 0;
data.push_back({ static_cast<float_t>(in[0]),
static_cast<float_t>(in[1]) });
out.emplace_back(std::vector<vec_t>{
{ static_cast<float_t>(in[0] && in[1]),
static_cast<float_t>(in[0] || in[1]) }, // 1st output train and/or function
{ static_cast<float_t>(in[0] ^ in[1]),
static_cast<float_t>(in[0] == in[1]) } // 2nd output train xor/eq function
});
}
// construct single input, dual output network
construct_graph(net, {in}, {out1,out2});
optimizer.alpha *= 10;
//net.fit<mse>(optimizer, data, out, 10, 10, nop, [&](){ std::cout << net.get_loss<mse>(data,out) << std::endl;});
net.fit<mse>(optimizer, data, out, 10, 10);
for (size_t i = 0; i < tnum; i++) {
bool in[2] = { bernoulli(0.5), bernoulli(0.5) };
std::vector<vec_t> actual = net.predict(
std::vector<vec_t>{{ static_cast<float_t>(in[0]),
static_cast<float_t>(in[1]) }});
vec_t actual_out1 = actual[0];
vec_t actual_out2 = actual[1];
EXPECT_NEAR(actual_out1[0], in[0] && in[1], 0.1);
EXPECT_NEAR(actual_out1[1], in[0] || in[1], 0.1);
EXPECT_NEAR(actual_out2[0], in[0] ^ in[1], 0.1);
EXPECT_NEAR(actual_out2[1], in[0] == in[1], 0.1);
}
}*/
TEST(network, train_predict) {
// train xor function
network<sequential> net;
adagrad optimizer;
std::vector<vec_t> data;
std::vector<label_t> label;
size_t tnum = 300;
optimizer.alpha *= 10;
for (size_t i = 0; i < tnum; i++) {
bool in[2] = { bernoulli(0.5), bernoulli(0.5) };
data.push_back({ static_cast<float_t>(in[0]),
static_cast<float_t>(in[1]) });
label.push_back((in[0] ^ in[1]) ? 1 : 0);
}
net << fully_connected_layer<tan_h>(2, 10)
<< fully_connected_layer<tan_h>(10, 2);
net.train<mse>(optimizer, data, label, 10, 10);
std::vector<tensor_t> parallel_input(tnum);
std::vector<tensor_t> expected_parallel_output(tnum);
for (size_t i = 0; i < tnum; i++) {
const bool in[2] = { bernoulli(0.5), bernoulli(0.5) };
const label_t expected = (in[0] ^ in[1]) ? 1 : 0;
const vec_t input = { static_cast<float_t>(in[0]),
static_cast<float_t>(in[1]) };
const label_t actual = net.predict_label(input);
EXPECT_EQ(expected, actual);
const auto actual_vec = net.predict(input);
EXPECT_EQ(expected == 1, actual_vec[1] > actual_vec[0]);
parallel_input[i] = tensor_t{ input };
expected_parallel_output[i] = tensor_t{ actual_vec };
}
// test predicting multiple samples in parallel
const auto actual_parallel_output = net.predict(parallel_input);
for (size_t i = 0; i < tnum; i++) {
EXPECT_NEAR(expected_parallel_output[i][0][0], actual_parallel_output[i][0][0], 1e-10);
EXPECT_NEAR(expected_parallel_output[i][0][1], actual_parallel_output[i][0][1], 1e-10);
}
}
TEST(network, set_netphase) {
// TODO: add unit-test for public api
}
TEST(network, test) {
network<sequential> net;
fully_connected_layer<identity> fc(30, 1);
int data_num = 300;
net << fc;
net.weight_init(weight_init::constant(1.0));
net.init_weight();
std::vector<vec_t> in, expected;
for (int i = 0; i < data_num; i++) {
vec_t v(30);
uniform_rand(v.begin(), v.end(), -1.0, 1.0);
float_t sum = std::accumulate(v.begin(), v.end(), (float_t)0.0);
in.emplace_back(v);
expected.emplace_back(vec_t{sum});
}
auto out = net.test(in);
for (int i = 0; i < data_num; i++) {
for (size_t j = 0; j < out[i].size(); j++)
EXPECT_FLOAT_EQ(out[i][j], expected[i][0]);
}
}
TEST(network, get_loss) {
// TODO: add unit-test for public api
}
TEST(network, at) {
network<sequential> net;
convolutional_layer<identity> c1(32, 32, 5, 3, 6, padding::same);
average_pooling_layer<identity> p1(32, 32, 6, 2);
net << c1 << p1;
net.init_weight();
// auto& c = net.at<convolutional_layer<identity>>(0);
// auto& p = net.at<average_pooling_layer<identity>>(1);
}
TEST(network, bracket_operator) {
network<sequential> net;
net << convolutional_layer<identity>(32, 32, 5, 3, 6, padding::same)
<< average_pooling_layer<identity>(32, 32, 6, 2);
EXPECT_EQ(net[0]->layer_type(), "conv");
EXPECT_EQ(net[1]->layer_type(), "ave-pool");
}
TEST(network, weight_init) {
network<sequential> net;
net << convolutional_layer<identity>(32, 32, 5, 3, 6, padding::same)
<< average_pooling_layer<identity>(32, 32, 6, 2);
// change all layers at once
net.weight_init(weight_init::constant(2.0));
net.init_weight();
vec_t& w1 = *net[0]->weights()[0];
vec_t& w2 = *net[1]->weights()[0];
for (size_t i = 0; i < w1.size(); i++)
EXPECT_NEAR(w1[i], 2.0, 1e-10);
for (size_t i = 0; i < w2.size(); i++)
EXPECT_NEAR(w2[i], 2.0, 1e-10);
}
TEST(network, weight_init_per_layer) {
network<sequential> net;
net << convolutional_layer<identity>(32, 32, 5, 3, 6, padding::same)
<< average_pooling_layer<identity>(32, 32, 6, 2);
// change specific layer
net[0]->weight_init(weight_init::constant(2.0));
net[1]->weight_init(weight_init::constant(1.0));
net.init_weight();
vec_t& w1 = *net[0]->weights()[0];
vec_t& w2 = *net[1]->weights()[0];
for (size_t i = 0; i < w1.size(); i++)
EXPECT_NEAR(w1[i], 2.0, 1e-10);
for (size_t i = 0; i < w2.size(); i++)
EXPECT_NEAR(w2[i], 1.0, 1e-10);
}
TEST(network, bias_init) {
network<sequential> net;
net << convolutional_layer<identity>(32, 32, 5, 3, 6, padding::same)
<< average_pooling_layer<identity>(32, 32, 6, 2);
net.bias_init(weight_init::constant(2.0));
net.init_weight();
vec_t& w1 = *net[0]->weights()[1];
vec_t& w2 = *net[1]->weights()[1];
for (size_t i = 0; i < w1.size(); i++)
EXPECT_NEAR(w1[i], 2.0, 1e-10);
for (size_t i = 0; i < w2.size(); i++)
EXPECT_NEAR(w2[i], 2.0, 1e-10);
}
TEST(network, bias_init_per_layer) {
network<sequential> net;
net << convolutional_layer<identity>(32, 32, 5, 3, 6, padding::same)
<< average_pooling_layer<identity>(32, 32, 6, 2);
net[0]->bias_init(weight_init::constant(2.0));
net[1]->bias_init(weight_init::constant(1.0));
net.init_weight();
vec_t& w1 = *net[0]->weights()[1];
vec_t& w2 = *net[1]->weights()[1];
for (size_t i = 0; i < w1.size(); i++)
EXPECT_NEAR(w1[i], 2.0, 1e-10);
for (size_t i = 0; i < w2.size(); i++)
EXPECT_NEAR(w2[i], 1.0, 1e-10);
}
TEST(network, gradient_check) { // sigmoid - cross-entropy
typedef cross_entropy loss_func;
typedef sigmoid activation;
typedef network<sequential> network;
network nn;
nn << fully_connected_layer<activation>(10, 14*14*3)
<< convolutional_layer<activation>(14, 14, 5, 3, 6)
<< average_pooling_layer<activation>(10, 10, 6, 2)
<< fully_connected_layer<activation>(5*5*6, 3);
const auto test_data = generate_gradient_check_data(nn.in_data_size());
nn.init_weight();
EXPECT_TRUE(nn.gradient_check<loss_func>(test_data.first,
test_data.second,
epsilon<float_t>(), GRAD_CHECK_RANDOM));
}
TEST(network, gradient_check2) { // tan_h - mse
typedef mse loss_func;
typedef tan_h activation;
typedef network<sequential> network;
network nn;
nn << fully_connected_layer<activation>(10, 14 * 14 * 3)
<< convolutional_layer<activation>(14, 14, 5, 3, 6)
<< average_pooling_layer<activation>(10, 10, 6, 2)
<< fully_connected_layer<activation>(5 * 5 * 6, 3);
const auto test_data = generate_gradient_check_data(nn.in_data_size());
nn.init_weight();
EXPECT_TRUE(nn.gradient_check<loss_func>(test_data.first,
test_data.second,
epsilon<float_t>(), GRAD_CHECK_RANDOM));
}
TEST(network, gradient_check3) { // mixture - mse
typedef mse loss_func;
typedef network<sequential> network;
network nn;
nn << fully_connected_layer<tan_h>(10, 14 * 14 * 3)
<< convolutional_layer<sigmoid>(14, 14, 5, 3, 6)
<< average_pooling_layer<rectified_linear>(10, 10, 6, 2)
<< fully_connected_layer<identity>(5 * 5 * 6, 3);
const auto test_data = generate_gradient_check_data(nn.in_data_size());
nn.init_weight();
EXPECT_TRUE(nn.gradient_check<loss_func>(test_data.first,
test_data.second,
epsilon<float_t>(), GRAD_CHECK_RANDOM));
}
TEST(network, gradient_check4) { // sigmoid - cross-entropy
typedef cross_entropy loss_func;
typedef sigmoid activation;
typedef network<sequential> network;
network nn;
nn << fully_connected_layer<activation>(10, 14 * 14 * 3)
<< convolutional_layer<activation>(14, 14, 5, 3, 6)
<< average_pooling_layer<activation>(10, 10, 6, 2)
<< fully_connected_layer<activation>(5 * 5 * 6, 3);
const auto test_data = generate_gradient_check_data(nn.in_data_size());
nn.init_weight();
EXPECT_TRUE(nn.gradient_check<loss_func>(test_data.first,
test_data.second,
epsilon<float_t>(), GRAD_CHECK_RANDOM));
}
TEST(network, gradient_check5) { // softmax - cross-entropy
typedef cross_entropy loss_func;
typedef softmax activation;
typedef network<sequential> network;
network nn;
nn << fully_connected_layer<activation>(10, 14 * 14 * 3)
<< convolutional_layer<activation>(14, 14, 5, 3, 6)
<< average_pooling_layer<activation>(10, 10, 6, 2)
<< fully_connected_layer<activation>(5 * 5 * 6, 3);
const auto test_data = generate_gradient_check_data(nn.in_data_size());
nn.init_weight();
EXPECT_TRUE(nn.gradient_check<loss_func>(test_data.first,
test_data.second,
1e-1f, GRAD_CHECK_RANDOM));
}
TEST(network, gradient_check6) { // sigmoid - cross-entropy
typedef cross_entropy loss_func;
typedef sigmoid activation;
typedef network<sequential> network;
network nn;
nn << fully_connected_layer<activation>(3, 201)
<< fully_connected_layer<activation>(201, 2);
const auto test_data = generate_gradient_check_data(nn.in_data_size());
nn.init_weight();
EXPECT_TRUE(nn.gradient_check<loss_func>(test_data.first,
test_data.second,
epsilon<float_t>(), GRAD_CHECK_ALL));
}
TEST(network, gradient_check7) { // leaky-relu - mse
typedef mse loss_func;
typedef leaky_relu activation;
auto nn = make_mlp<activation>({ 3, 201, 2 });
const auto test_data = generate_gradient_check_data(nn.in_data_size());
nn.init_weight();
// We need to use larger threshold here, because
// relu/elu/leaky-relu has non-smooth region of the form
//
// @todo improve gradient-checker to ignore non-smooth region like
// caffe's GradientChecker (they have kink/kink-range parameter to handle it)
EXPECT_TRUE(nn.gradient_check<loss_func>(test_data.first,
test_data.second,
10*epsilon<float_t>(), GRAD_CHECK_ALL));
}
TEST(network, gradient_check8) { // elu - mse
typedef mse loss_func;
typedef elu activation;
auto nn = make_mlp<activation>({3, 201, 2});
const auto test_data = generate_gradient_check_data(nn.in_data_size());
nn.init_weight();
// We need to use larger threshold here, because
// relu/elu/leaky-relu has non-smooth region of the form
//
// @todo improve gradient-checker to ignore non-smooth region like
// caffe's GradientChecker (they have kink/kink-range parameter to handle it)
EXPECT_TRUE(nn.gradient_check<loss_func>(test_data.first,
test_data.second,
10*epsilon<float_t>(), GRAD_CHECK_ALL));
}
TEST(network, gradient_check9) { // tan_hp1m2 - mse
typedef mse loss_func;
typedef tan_hp1m2 activation;
auto nn = make_mlp<activation>({ 3, 201, 2 });
const auto test_data = generate_gradient_check_data(nn.in_data_size());
nn.init_weight();
EXPECT_TRUE(nn.gradient_check<loss_func>(test_data.first,
test_data.second,
epsilon<float_t>(), GRAD_CHECK_ALL));
}
TEST(network, read_write)
{
typedef mse loss_func;
typedef network<sequential> network;
network n1, n2;
n1 << convolutional_layer<tan_h>(32, 32, 5, 1, 6) // C1, 1@32x32-in, 6@28x28-out
<< average_pooling_layer<tan_h>(28, 28, 6, 2) // S2, 6@28x28-in, 6@14x14-out
<< convolutional_layer<tan_h>(14, 14, 5, 6, 16) // C3, 6@14x14-in, 16@10x10-in
<< average_pooling_layer<tan_h>(10, 10, 16, 2) // S4, 16@10x10-in, 16@5x5-out
<< convolutional_layer<tan_h>(5, 5, 5, 16, 120) // C5, 16@5x5-in, 120@1x1-out
<< fully_connected_layer<tan_h>(120, 10); // F6, 120-in, 10-out
n2 << convolutional_layer<tan_h>(32, 32, 5, 1, 6) // C1, 1@32x32-in, 6@28x28-out
<< average_pooling_layer<tan_h>(28, 28, 6, 2) // S2, 6@28x28-in, 6@14x14-out
<< convolutional_layer<tan_h>(14, 14, 5, 6, 16) // C3, 6@14x14-in, 16@10x10-in
<< average_pooling_layer<tan_h>(10, 10, 16, 2) // S4, 16@10x10-in, 16@5x5-out
<< convolutional_layer<tan_h>(5, 5, 5, 16, 120) // C5, 16@5x5-in, 120@1x1-out
<< fully_connected_layer<tan_h>(120, 10); // F6, 120-in, 10-out
n1.init_weight();
n2.init_weight();
std::vector<vec_t> t;
std::vector<label_t> l;
t.push_back(vec_t(32*32, 0.0));
l.push_back(3);
adagrad optimizer;
n1.train<loss_func>(optimizer, t, l, 1, 1);
serialization_test(n1, n2);
vec_t in(32*32, 0.0);
auto res1 = n1.predict(in);
auto res2 = n2.predict(in);
ASSERT_TRUE(n1.has_same_weights(n2, epsilon<float_t>()));
for (int i = 0; i < 10; i++) {
tiny_dnn::float_t eps = std::abs(res1[i]) * 1e-5f;
ASSERT_TRUE(std::abs(res1[i] - res2[i]) < eps);
}
}
TEST(network, trainable) {
auto net = make_mlp<sigmoid>({ 2,3,2,1 }); // fc(2,3) - fc(3,2) - fc(2,1)
// trainable=false, or "freeze" 2nd layer fc(3,2)
net[1]->set_trainable(false);
vec_t w0 = { 0,1,2,3,4,5 };
vec_t w1 = { 6,7,8,9,8,7 };
vec_t w2 = { 6,5 };
*net[0]->weights()[0] = { 0,1,2,3,4,5 };
*net[1]->weights()[0] = { 6,7,8,9,8,7 };
*net[2]->weights()[0] = { 6,5 };
adam a;
net.init_weight();
auto w0_standby = *net[0]->weights()[0];
auto w1_standby = *net[1]->weights()[0];
auto w2_standby = *net[2]->weights()[0];
EXPECT_NE(w0, w0_standby);
EXPECT_EQ(w1, w1_standby);
EXPECT_NE(w2, w2_standby);
std::vector<vec_t> data{ {1,0}, {0,2} };
std::vector<vec_t> out{ {2}, {1} };
net.fit<mse>(a, data, out, 1, 1);
auto w0_after_update = *net[0]->weights()[0];
auto w1_after_update = *net[1]->weights()[0];
auto w2_after_update = *net[2]->weights()[0];
EXPECT_NE(w0, w0_after_update);
EXPECT_EQ(w1, w1_after_update);
EXPECT_NE(w2, w2_after_update);
}
} // namespace tiny-dnn
|