1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
/*
Copyright (c) 2013, Taiga Nomi
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the <organization> nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <string>
#include <vector>
#include <algorithm>
#include "tiny_dnn/util/util.h"
#include "tiny_dnn/util/image.h"
#include "tiny_dnn/layers/partial_connected_layer.h"
#include "tiny_dnn/activations/activation_function.h"
namespace tiny_dnn {
// forward_propagation
template <typename Activation>
void tiny_average_unpooling_kernel(bool parallelize,
const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data,
const shape3d& out_dim,
float_t scale_factor,
std::vector<typename partial_connected_layer<Activation>::wi_connections>& out2wi,
Activation& h) {
for (size_t sample = 0; sample < in_data[0]->size(); sample++) {
const vec_t& in = (*in_data[0])[sample];
const vec_t& W = (*in_data[1])[0];
const vec_t& b = (*in_data[2])[0];
vec_t& out = (*out_data[0])[sample];
vec_t& a = (*out_data[1])[sample];
auto oarea = out_dim.area();
size_t idx = 0;
for (size_t d = 0; d < out_dim.depth_; ++d) {
float_t weight = W[d];// * scale_factor;
float_t bias = b[d];
for (size_t i = 0; i < oarea; ++i, ++idx) {
const auto& connections = out2wi[idx];
float_t value = float_t(0);
for (auto connection : connections)// 13.1%
value += in[connection.second]; // 3.2%
value *= weight;
value += bias;
a[idx] = value;
}
}
assert(out.size() == out2wi.size());
for_i(parallelize, out2wi.size(), [&](int i) {
out[i] = h.f(a, i);
});
}
}
// back_propagation
template<typename Activation>
void tiny_average_unpooling_back_kernel(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad,
const shape3d& in_dim,
float_t scale_factor,
std::vector<typename partial_connected_layer<Activation>::io_connections>& weight2io,
std::vector<typename partial_connected_layer<Activation>::wo_connections>& in2wo,
std::vector<std::vector<serial_size_t>>& bias2out) {
for (size_t sample = 0; sample < in_data[0]->size(); sample++) {
const vec_t& prev_out = (*in_data[0])[sample];
const vec_t& W = (*in_data[1])[0];
vec_t& dW = (*in_grad[1])[sample];
vec_t& db = (*in_grad[2])[sample];
vec_t& prev_delta = (*in_grad[0])[sample];
vec_t& curr_delta = (*out_grad[0])[sample];
auto inarea = in_dim.area();
size_t idx = 0;
for (size_t i = 0; i < in_dim.depth_; ++i) {
float_t weight = W[i];// * scale_factor;
for (size_t j = 0; j < inarea; ++j, ++idx) {
prev_delta[idx] = weight * curr_delta[in2wo[idx][0].second];
}
}
for (size_t i = 0; i < weight2io.size(); ++i) {
const auto& connections = weight2io[i];
float_t diff = float_t(0);
for (auto connection : connections)
diff += prev_out[connection.first] * curr_delta[connection.second];
dW[i] += diff;// * scale_factor;
}
for (size_t i = 0; i < bias2out.size(); i++) {
const std::vector<serial_size_t>& outs = bias2out[i];
float_t diff = float_t(0);
for (auto o : outs)
diff += curr_delta[o];
db[i] += diff;
}
}
}
/**
* average pooling with trainable weights
**/
template<typename Activation = activation::identity>
class average_unpooling_layer : public partial_connected_layer<Activation> {
public:
typedef partial_connected_layer<Activation> Base;
CNN_USE_LAYER_MEMBERS;
/**
* @param in_width [in] width of input image
* @param in_height [in] height of input image
* @param in_channels [in] the number of input image channels(depth)
* @param pooling_size [in] factor by which to upscale
**/
average_unpooling_layer(serial_size_t in_width,
serial_size_t in_height,
serial_size_t in_channels,
serial_size_t pooling_size)
: Base(in_width * in_height * in_channels,
in_width * in_height * in_channels * sqr(pooling_size),
in_channels, in_channels, float_t(1) * sqr(pooling_size)),
stride_(pooling_size),
in_(in_width, in_height, in_channels),
out_(in_width*pooling_size, in_height*pooling_size, in_channels),
w_(pooling_size, pooling_size, in_channels) {
init_connection(pooling_size);
}
/**
* @param in_width [in] width of input image
* @param in_height [in] height of input image
* @param in_channels [in] the number of input image channels(depth)
* @param pooling_size [in] factor by which to upscale
* @param stride [in] interval at which to apply the filters to the input
**/
average_unpooling_layer(serial_size_t in_width,
serial_size_t in_height,
serial_size_t in_channels,
serial_size_t pooling_size,
serial_size_t stride)
: Base(in_width * in_height * in_channels,
unpool_out_dim(in_width, pooling_size, stride) *
unpool_out_dim(in_height, pooling_size, stride) * in_channels,
in_channels, in_channels, float_t(1) * sqr(pooling_size)),
stride_(stride),
in_(in_width, in_height, in_channels),
out_(unpool_out_dim(in_width, pooling_size, stride),
unpool_out_dim(in_height, pooling_size, stride), in_channels),
w_(pooling_size, pooling_size, in_channels) {
init_connection(pooling_size);
}
std::vector<index3d<serial_size_t>> in_shape() const override {
return { in_, w_, index3d<serial_size_t>(1, 1, out_.depth_) };
}
std::vector<index3d<serial_size_t>> out_shape() const override {
return { out_, out_ };
}
std::string layer_type() const override { return "ave-unpool"; }
void forward_propagation(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
tiny_average_unpooling_kernel<Activation>(
parallelize_,
in_data,
out_data,
out_,
Base::scale_factor_,
Base::out2wi_,
Base::h_);
}
void back_propagation(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
tensor_t& curr_delta = *out_grad[0];
this->backward_activation(*out_grad[0], *out_data[0], curr_delta);
tiny_average_unpooling_back_kernel<Activation>(
in_data,
out_data,
out_grad,
in_grad,
in_,
Base::scale_factor_,
Base::weight2io_,
Base::in2wo_,
Base::bias2out_);
}
private:
serial_size_t stride_;
shape3d in_;
shape3d out_;
shape3d w_;
static serial_size_t unpool_out_dim(serial_size_t in_size,
serial_size_t pooling_size,
serial_size_t stride) {
return static_cast<int>((in_size-1) * stride + pooling_size);
}
void init_connection(serial_size_t pooling_size) {
for (serial_size_t c = 0; c < in_.depth_; ++c) {
for (serial_size_t y = 0; y < in_.height_; ++y) {
for (serial_size_t x = 0; x < in_.width_; ++x) {
connect_kernel(pooling_size, x, y, c);
}
}
}
for (serial_size_t c = 0; c < in_.depth_; ++c) {
for (serial_size_t y = 0; y < out_.height_; ++y) {
for (serial_size_t x = 0; x < out_.width_; ++x) {
this->connect_bias(c, out_.get_index(x, y, c));
}
}
}
}
void connect_kernel(serial_size_t pooling_size,
serial_size_t x,
serial_size_t y,
serial_size_t inc) {
serial_size_t dymax = std::min(pooling_size, out_.height_ - y);
serial_size_t dxmax = std::min(pooling_size, out_.width_ - x);
serial_size_t dstx = x * stride_;
serial_size_t dsty = y * stride_;
serial_size_t inidx = in_.get_index(x, y, inc);
for (serial_size_t dy = 0; dy < dymax; ++dy) {
for (serial_size_t dx = 0; dx < dxmax; ++dx) {
this->connect_weight(
inidx,
out_.get_index(dstx + dx, dsty + dy, inc),
inc);
}
}
}
};
} // namespace tiny_dnn
|