File: average_unpooling_layer.h

package info (click to toggle)
tiny-dnn 1.0.0a3%2Bds-5
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 4,784 kB
  • sloc: cpp: 16,471; ansic: 11,829; lisp: 3,682; python: 3,422; makefile: 208
file content (278 lines) | stat: -rw-r--r-- 11,312 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
/*
    Copyright (c) 2013, Taiga Nomi
    All rights reserved.

    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions are met:
    * Redistributions of source code must retain the above copyright
    notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
    notice, this list of conditions and the following disclaimer in the
    documentation and/or other materials provided with the distribution.
    * Neither the name of the <organization> nor the
    names of its contributors may be used to endorse or promote products
    derived from this software without specific prior written permission.

    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
    EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
    WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
    DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
    DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
    LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
    ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once

#include <string>
#include <vector>
#include <algorithm>

#include "tiny_dnn/util/util.h"
#include "tiny_dnn/util/image.h"
#include "tiny_dnn/layers/partial_connected_layer.h"
#include "tiny_dnn/activations/activation_function.h"

namespace tiny_dnn {

// forward_propagation
template <typename Activation>
void tiny_average_unpooling_kernel(bool parallelize,
                                   const std::vector<tensor_t*>& in_data,
                                   std::vector<tensor_t*>&       out_data,
                                   const shape3d&                out_dim,
                                   float_t                       scale_factor,
                                   std::vector<typename partial_connected_layer<Activation>::wi_connections>& out2wi,
                                   Activation&                   h) {
    for (size_t sample = 0; sample < in_data[0]->size(); sample++) {
        const vec_t& in  = (*in_data[0])[sample];
        const vec_t& W   = (*in_data[1])[0];
        const vec_t& b   = (*in_data[2])[0];
        vec_t&       out = (*out_data[0])[sample];
        vec_t&       a   = (*out_data[1])[sample];

        auto oarea = out_dim.area();
        size_t idx = 0;
        for (size_t d = 0; d < out_dim.depth_; ++d) {
            float_t weight = W[d];// * scale_factor;
            float_t bias = b[d];
            for (size_t i = 0; i < oarea; ++i, ++idx) {
                const auto& connections = out2wi[idx];
                float_t value = float_t(0);
                for (auto connection : connections)// 13.1%
                    value += in[connection.second]; // 3.2%
                value *= weight;
                value += bias;
                a[idx] = value;
            }
        }

        assert(out.size() == out2wi.size());
        for_i(parallelize, out2wi.size(), [&](int i) {
            out[i] = h.f(a, i);
        });
    }
}

// back_propagation
template<typename Activation>
void tiny_average_unpooling_back_kernel(const std::vector<tensor_t*>&   in_data,
                                        const std::vector<tensor_t*>&   out_data,
                                        std::vector<tensor_t*>&         out_grad,
                                        std::vector<tensor_t*>&         in_grad,
                                        const shape3d&                  in_dim,
                                        float_t                         scale_factor,
                                        std::vector<typename partial_connected_layer<Activation>::io_connections>& weight2io,
                                        std::vector<typename partial_connected_layer<Activation>::wo_connections>& in2wo,
                                        std::vector<std::vector<serial_size_t>>& bias2out) {

    for (size_t sample = 0; sample < in_data[0]->size(); sample++) {
        const vec_t& prev_out   = (*in_data[0])[sample];
        const vec_t& W          = (*in_data[1])[0];
        vec_t&       dW         = (*in_grad[1])[sample];
        vec_t&       db         = (*in_grad[2])[sample];
        vec_t&       prev_delta = (*in_grad[0])[sample];
        vec_t&       curr_delta = (*out_grad[0])[sample];

        auto inarea = in_dim.area();
        size_t idx = 0;
        for (size_t i = 0; i < in_dim.depth_; ++i) {
            float_t weight = W[i];// * scale_factor;
            for (size_t j = 0; j < inarea; ++j, ++idx) {
                prev_delta[idx] = weight * curr_delta[in2wo[idx][0].second];
            }
        }

        for (size_t i = 0; i < weight2io.size(); ++i) {
            const auto& connections = weight2io[i];
            float_t diff = float_t(0);

            for (auto connection : connections)
                diff += prev_out[connection.first] * curr_delta[connection.second];

            dW[i] += diff;// * scale_factor;
        }

        for (size_t i = 0; i < bias2out.size(); i++) {
            const std::vector<serial_size_t>& outs = bias2out[i];
            float_t diff = float_t(0);

            for (auto o : outs)
                diff += curr_delta[o];

            db[i] += diff;
        }
    }
}

/**
 * average pooling with trainable weights
 **/
template<typename Activation = activation::identity>
class average_unpooling_layer : public partial_connected_layer<Activation> {
 public:
    typedef partial_connected_layer<Activation> Base;
    CNN_USE_LAYER_MEMBERS;

    /**
     * @param in_width     [in] width of input image
     * @param in_height    [in] height of input image
     * @param in_channels  [in] the number of input image channels(depth)
     * @param pooling_size [in] factor by which to upscale
     **/
    average_unpooling_layer(serial_size_t in_width,
                            serial_size_t in_height,
                            serial_size_t in_channels,
                            serial_size_t pooling_size)
            : Base(in_width * in_height * in_channels,
                   in_width * in_height * in_channels * sqr(pooling_size),
                   in_channels, in_channels, float_t(1) * sqr(pooling_size)),
              stride_(pooling_size),
              in_(in_width, in_height, in_channels),
              out_(in_width*pooling_size, in_height*pooling_size, in_channels),
              w_(pooling_size, pooling_size, in_channels) {

        init_connection(pooling_size);
    }

    /**
     * @param in_width     [in] width of input image
     * @param in_height    [in] height of input image
     * @param in_channels  [in] the number of input image channels(depth)
     * @param pooling_size [in] factor by which to upscale
     * @param stride       [in] interval at which to apply the filters to the input
    **/
    average_unpooling_layer(serial_size_t in_width,
                            serial_size_t in_height,
                            serial_size_t in_channels,
                            serial_size_t pooling_size,
                            serial_size_t stride)
        : Base(in_width * in_height * in_channels,
               unpool_out_dim(in_width, pooling_size, stride) *
               unpool_out_dim(in_height, pooling_size, stride) * in_channels,
               in_channels, in_channels, float_t(1) * sqr(pooling_size)),
          stride_(stride),
          in_(in_width, in_height, in_channels),
          out_(unpool_out_dim(in_width, pooling_size, stride),
               unpool_out_dim(in_height, pooling_size, stride), in_channels),
          w_(pooling_size, pooling_size, in_channels) {

        init_connection(pooling_size);
    }

    std::vector<index3d<serial_size_t>> in_shape() const override {
        return { in_, w_, index3d<serial_size_t>(1, 1, out_.depth_) };
    }

    std::vector<index3d<serial_size_t>> out_shape() const override {
        return { out_, out_ };
    }

    std::string layer_type() const override { return "ave-unpool"; }

    void forward_propagation(const std::vector<tensor_t*>& in_data,
                             std::vector<tensor_t*>& out_data) override {

        tiny_average_unpooling_kernel<Activation>(
            parallelize_,
            in_data,
            out_data,
            out_,
            Base::scale_factor_,
            Base::out2wi_,
            Base::h_);

    }

    void back_propagation(const std::vector<tensor_t*>& in_data,
                          const std::vector<tensor_t*>& out_data,
                          std::vector<tensor_t*>&       out_grad,
                          std::vector<tensor_t*>&       in_grad) override {
        tensor_t& curr_delta = *out_grad[0];
        this->backward_activation(*out_grad[0], *out_data[0], curr_delta);

        tiny_average_unpooling_back_kernel<Activation>(
            in_data,
            out_data,
            out_grad,
            in_grad,
            in_,
            Base::scale_factor_,
            Base::weight2io_,
            Base::in2wo_,
            Base::bias2out_);
    }

 private:
    serial_size_t stride_;
    shape3d in_;
    shape3d out_;
    shape3d w_;

    static serial_size_t unpool_out_dim(serial_size_t in_size,
                                     serial_size_t pooling_size,
                                     serial_size_t stride) {
        return static_cast<int>((in_size-1) * stride + pooling_size);
    }

    void init_connection(serial_size_t pooling_size) {
        for (serial_size_t c = 0; c < in_.depth_; ++c) {
            for (serial_size_t y = 0; y < in_.height_; ++y) {
                for (serial_size_t x = 0; x < in_.width_; ++x) {
                    connect_kernel(pooling_size, x, y, c);
                }
            }
        }

        for (serial_size_t c = 0; c < in_.depth_; ++c) {
            for (serial_size_t y = 0; y < out_.height_; ++y) {
                for (serial_size_t x = 0; x < out_.width_; ++x) {
                    this->connect_bias(c, out_.get_index(x, y, c));
                }
            }
        }
    }

    void connect_kernel(serial_size_t pooling_size,
                        serial_size_t x,
                        serial_size_t y,
                        serial_size_t inc) {
        serial_size_t dymax = std::min(pooling_size, out_.height_ - y);
        serial_size_t dxmax = std::min(pooling_size, out_.width_ - x);
        serial_size_t dstx = x * stride_;
        serial_size_t dsty = y * stride_;
        serial_size_t inidx = in_.get_index(x, y, inc);
        for (serial_size_t dy = 0; dy < dymax; ++dy) {
            for (serial_size_t dx = 0; dx < dxmax; ++dx) {
                this->connect_weight(
                    inidx,
                    out_.get_index(dstx + dx, dsty + dy, inc),
                    inc);
            }
        }
    }
};

}  // namespace tiny_dnn