1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
/*
Copyright (c) 2013, Taiga Nomi
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the <organization> nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <vector>
#include <string>
#include <algorithm>
#include "tiny_dnn/core/kernels/conv2d_op.h"
#include "tiny_dnn/core/kernels/conv2d_grad_op.h"
#include "tiny_dnn/core/kernels/conv2d_op_opencl.h"
#include "tiny_dnn/core/kernels/conv2d_op_libdnn.h"
#include "tiny_dnn/util/util.h"
#include "tiny_dnn/util/image.h"
#include "tiny_dnn/activations/activation_function.h"
using namespace tiny_dnn::core;
namespace tiny_dnn {
/**
* 2D convolution layer
*
* take input as two-dimensional *image* and applying filtering operation.
**/
template<typename Activation = activation::identity>
class convolutional_layer : public feedforward_layer<Activation> {
public:
typedef feedforward_layer<Activation> Base;
CNN_USE_LAYER_MEMBERS;
/**
* constructing convolutional layer
*
* @param in_width [in] input image width
* @param in_height [in] input image height
* @param window_size [in] window(kernel) size of convolution
* @param in_channels [in] input image channels (grayscale=1, rgb=3)
* @param out_channels [in] output image channels
* @param padding [in] rounding strategy
* - valid: use valid pixels of input only. ```output-size = (in-width - window_width + 1) * (in-height - window_height + 1) * out_channels```
* - same: add zero-padding to keep same width/height. ```output-size = in-width * in-height * out_channels```
* @param has_bias [in] whether to add a bias vector to the filter outputs
* @param w_stride [in] specify the horizontal interval at which to apply the filters to the input
* @param h_stride [in] specify the vertical interval at which to apply the filters to the input
* @param backend_type [in] specify backend engine you use
**/
convolutional_layer(serial_size_t in_width,
serial_size_t in_height,
serial_size_t window_size,
serial_size_t in_channels,
serial_size_t out_channels,
padding pad_type = padding::valid,
bool has_bias = true,
serial_size_t w_stride = 1,
serial_size_t h_stride = 1,
backend_t backend_type = core::default_engine())
: convolutional_layer(in_width, in_height, window_size, window_size,
in_channels, out_channels, connection_table(),
pad_type, has_bias, w_stride, h_stride,
backend_type) {}
/**
* constructing convolutional layer
*
* @param in_width [in] input image width
* @param in_height [in] input image height
* @param window_width [in] window_width(kernel) size of convolution
* @param window_height [in] window_height(kernel) size of convolution
* @param in_channels [in] input image channels (grayscale=1, rgb=3)
* @param out_channels [in] output image channels
* @param padding [in] rounding strategy
* - valid: use valid pixels of input only. ```output-size = (in-width - window_width + 1) * (in-height - window_height + 1) * out_channels```
* - same: add zero-padding to keep same width/height. ```output-size = in-width * in-height * out_channels```
* @param has_bias [in] whether to add a bias vector to the filter outputs
* @param w_stride [in] specify the horizontal interval at which to apply the filters to the input
* @param h_stride [in] specify the vertical interval at which to apply the filters to the input
* @param backend_type [in] specify backend engine you use
**/
convolutional_layer(serial_size_t in_width,
serial_size_t in_height,
serial_size_t window_width,
serial_size_t window_height,
serial_size_t in_channels,
serial_size_t out_channels,
padding pad_type = padding::valid,
bool has_bias = true,
serial_size_t w_stride = 1,
serial_size_t h_stride = 1,
backend_t backend_type = core::default_engine())
: convolutional_layer(in_width, in_height, window_width, window_height,
in_channels, out_channels, connection_table(),
pad_type, has_bias, w_stride, h_stride,
backend_type) {}
/**
* constructing convolutional layer
*
* @param in_width [in] input image width
* @param in_height [in] input image height
* @param window_size [in] window(kernel) size of convolution
* @param in_channels [in] input image channels (grayscale=1, rgb=3)
* @param out_channels [in] output image channels
* @param connection_table [in] definition of connections between in-channels and out-channels
* @param pad_type [in] rounding strategy
* - valid: use valid pixels of input only. ```output-size = (in-width - window_width + 1) * (in-height - window_height + 1) * out_channels```
* - same: add zero-padding to keep same width/height. ```output-size = in-width * in-height * out_channels```
* @param has_bias [in] whether to add a bias vector to the filter outputs
* @param w_stride [in] specify the horizontal interval at which to apply the filters to the input
* @param h_stride [in] specify the vertical interval at which to apply the filters to the input
* @param backend_type [in] specify backend engine you use
**/
convolutional_layer(serial_size_t in_width,
serial_size_t in_height,
serial_size_t window_size,
serial_size_t in_channels,
serial_size_t out_channels,
const connection_table& connection_table,
padding pad_type = padding::valid,
bool has_bias = true,
serial_size_t w_stride = 1,
serial_size_t h_stride = 1,
backend_t backend_type = core::default_engine())
: convolutional_layer(in_width, in_height, window_size, window_size,
in_channels, out_channels, connection_table,
pad_type, has_bias, w_stride, h_stride,
backend_type) {}
/**
* constructing convolutional layer
*
* @param in_width [in] input image width
* @param in_height [in] input image height
* @param window_width [in] window_width(kernel) size of convolution
* @param window_height [in] window_height(kernel) size of convolution
* @param in_channels [in] input image channels (grayscale=1, rgb=3)
* @param out_channels [in] output image channels
* @param connection_table [in] definition of connections between in-channels and out-channels
* @param pad_type [in] rounding strategy
* - valid: use valid pixels of input only. ```output-size = (in-width - window_width + 1) * (in-height - window_height + 1) * out_channels```
* - same: add zero-padding to keep same width/height. ```output-size = in-width * in-height * out_channels```
* @param has_bias [in] whether to add a bias vector to the filter outputs
* @param w_stride [in] specify the horizontal interval at which to apply the filters to the input
* @param h_stride [in] specify the vertical interval at which to apply the filters to the input
* @param backend_type [in] specify backend engine you use
**/
convolutional_layer(serial_size_t in_width,
serial_size_t in_height,
serial_size_t window_width,
serial_size_t window_height,
serial_size_t in_channels,
serial_size_t out_channels,
const connection_table& connection_table,
padding pad_type = padding::valid,
bool has_bias = true,
serial_size_t w_stride = 1,
serial_size_t h_stride = 1,
backend_t backend_type = core::default_engine())
: Base(std_input_order(has_bias)) {
conv_set_params(shape3d(in_width, in_height, in_channels),
window_width, window_height,
out_channels, pad_type, has_bias,
w_stride, h_stride,
connection_table);
init_backend(backend_type);
Base::set_backend_type(backend_type);
}
// move constructor
convolutional_layer(convolutional_layer&& other) // NOLINT
: Base(std::move(other))
, params_(std::move(other.params_))
, padding_op_(std::move(other.padding_op_))
, kernel_fwd_(std::move(other.kernel_fwd_))
, kernel_back_(std::move(other.kernel_back_))
, cws_(std::move(other.cws_)) {
init_backend(std::move(other.engine()));
}
///< number of incoming connections for each output unit
serial_size_t fan_in_size() const override {
return params_.weight.width_ *
params_.weight.height_ * params_.in.depth_;
}
///< number of outgoing connections for each input unit
serial_size_t fan_out_size() const override {
return (params_.weight.width_ / params_.w_stride) *
(params_.weight.height_ / params_.h_stride) *
params_.out.depth_;
}
/**
* @param in_data input vectors of this layer (data, weight, bias)
* @param out_data output vectors
**/
void forward_propagation(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
// apply padding to the input tensor
padding_op_.copy_and_pad_input(*in_data[0], cws_.prev_out_padded_);
std::vector<tensor_t*> in_data_(in_data.size());
in_data_[0] = in_data_padded(in_data);
for (serial_size_t i = 1; i < in_data.size(); ++i) {
in_data_[i] = in_data[i];
}
// forward convolutional op context
auto ctx = OpKernelContext(in_data_, out_data);
ctx.setParallelize(layer::parallelize());
ctx.setEngine(layer::engine());
// launch convolutional kernel
kernel_fwd_->compute(ctx);
// activations
// TODO(edgar/nyanp): refactor and move activations outside
this->forward_activation(*out_data[0], *out_data[1]);
}
/**
* return delta of previous layer (delta=\frac{dE}{da}, a=wx in fully-connected layer)
* @param in_data input vectors (same vectors as forward_propagation)
* @param out_data output vectors (same vectors as forward_propagation)
* @param out_grad gradient of output vectors (i-th vector correspond with out_data[i])
* @param in_grad gradient of input vectors (i-th vector correspond with in_data[i])
**/
void back_propagation(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
// activations
// TODO(edgar/nyanp): refactor and move activations outside
this->backward_activation(*out_grad[0], *out_data[0], *out_grad[1]);
std::vector<tensor_t*> in_data_;
in_data_.push_back(in_data_padded(in_data));
for (serial_size_t i = 1; i < in_data.size(); ++i) {
in_data_.push_back(in_data[i]);
}
std::vector<tensor_t*> in_grad_;
for (serial_size_t i = 0; i < in_grad.size(); ++i) {
in_grad_.push_back(in_grad[i]);
}
if (params_.pad_type == padding::same) {
in_grad_[0] = &cws_.prev_delta_padded_;
}
auto ctx = OpKernelContext(in_data_, out_data, out_grad, in_grad_);
ctx.setParams(¶ms_);
ctx.setParallelize(layer::parallelize());
ctx.setEngine(layer::engine());
// launch convolutional kernel
kernel_back_->compute(ctx);
// unpad deltas
padding_op_.copy_and_unpad_delta(cws_.prev_delta_padded_, *in_grad[0]);
}
void set_sample_count(serial_size_t sample_count) override {
Base::set_sample_count(sample_count);
cws_.prev_delta_padded_.resize(
sample_count,
vec_t(params_.in_padded.size(), float_t(0)));
}
std::vector<index3d<serial_size_t>> in_shape() const override {
if (params_.has_bias) {
return { params_.in, params_.weight,
index3d<serial_size_t>(1, 1, params_.out.depth_) };
}
else {
return { params_.in, params_.weight };
}
}
std::vector<index3d<serial_size_t>>
out_shape() const override { return { params_.out, params_.out }; }
std::string layer_type() const override {
return std::string("conv");
}
//TODO(edgar): check this
std::string kernel_file() const override {
return std::string("../tiny_cnn/core/kernels/cl_kernels/conv_layer_spatial.cl");
}
//TODO(edgar): is it really needed?
std::string kernel_header() const override {
std::stringstream ss;
ss << "#define MULTI\n";
ss << "#define KERNEL_H " << params_.weight.height_ << "\n";
ss << "#define KERNEL_W " << params_.weight.width_ << "\n";
ss << "#define CHANNELS " << params_.weight.depth_ << "\n";
ss << "#define STRIDE_H " << params_.h_stride << "\n";
ss << "#define STRIDE_W " << params_.w_stride << "\n";
ss << "#define APPLY_BIAS " << params_.has_bias << "\n";
ss << "#define OUTPUT_Z " << params_.out.depth_ << "\n";
// TODO(edgar): REVISE THIS
ss << "#define ZPAR " << params_.out.depth_ << "\n";
return ss.str();
}
image<> weight_to_image() const {
image<> img;
const serial_size_t border_width = 1;
const auto pitch = params_.weight.width_ + border_width;
const auto width = params_.out.depth_ * pitch + border_width;
const auto height = params_.in.depth_ * pitch + border_width;
const image<>::intensity_t bg_color = 255;
const vec_t& W = *this->weights()[0];
img.resize(width, height);
img.fill(bg_color);
auto minmax = std::minmax_element(W.begin(), W.end());
for (serial_size_t r = 0; r < params_.in.depth_; ++r) {
for (serial_size_t c = 0; c < params_.out.depth_; ++c) {
if (!params_.tbl.is_connected(c, r)) continue;
const auto top = r * pitch + border_width;
const auto left = c * pitch + border_width;
serial_size_t idx = 0;
for (serial_size_t y = 0; y < params_.weight.height_; ++y) {
for (serial_size_t x = 0; x < params_.weight.width_; ++x) {
idx = c * params_.in.depth_ + r;
idx = params_.weight.get_index(x, y, idx);
const float_t w = W[idx];
img.at(left + x, top + y)
= static_cast<image<>::intensity_t>(
rescale(w, *minmax.first,
*minmax.second, 0, 255));
}
}
}
}
return img;
}
template <class Archive>
static void load_and_construct(
Archive & ar, cereal::construct<convolutional_layer> & construct) {
serial_size_t w_width, w_height, out_ch, w_stride, h_stride;
bool has_bias;
shape3d in;
padding pad_type;
connection_table tbl;
ar(cereal::make_nvp("in_size", in),
cereal::make_nvp("window_width", w_width),
cereal::make_nvp("window_height", w_height),
cereal::make_nvp("out_channels", out_ch),
cereal::make_nvp("connection_table", tbl),
cereal::make_nvp("pad_type", pad_type),
cereal::make_nvp("has_bias", has_bias),
cereal::make_nvp("w_stride", w_stride),
cereal::make_nvp("h_stride", h_stride)
);
construct(in.width_, in.height_, w_width, w_height, in.depth_,
out_ch, tbl, pad_type, has_bias, w_stride, h_stride);
}
template <class Archive>
void serialize(Archive & ar) {
layer::serialize_prolog(ar);
ar(cereal::make_nvp("in_size", params_.in),
cereal::make_nvp("window_width", params_.weight.width_),
cereal::make_nvp("window_height", params_.weight.height_),
cereal::make_nvp("out_channels", params_.out.depth_),
cereal::make_nvp("connection_table", params_.tbl),
cereal::make_nvp("pad_type", params_.pad_type),
cereal::make_nvp("has_bias", params_.has_bias),
cereal::make_nvp("w_stride", params_.w_stride),
cereal::make_nvp("h_stride", params_.h_stride)
);
}
private:
tensor_t* in_data_padded(const std::vector<tensor_t*>& in) {
return (params_.pad_type == padding::valid) ?
in[0] : &cws_.prev_out_padded_;
}
void conv_set_params(const shape3d& in,
serial_size_t w_width,
serial_size_t w_height,
serial_size_t outc,
padding ptype,
bool has_bias,
serial_size_t w_stride,
serial_size_t h_stride,
const connection_table& tbl = connection_table()) {
params_.in = in;
params_.in_padded = shape3d(in_length(in.width_, w_width, ptype),
in_length(in.height_, w_height, ptype),
in.depth_);
params_.out =
shape3d(conv_out_length(in.width_, w_width, w_stride, ptype),
conv_out_length(in.height_, w_height, h_stride, ptype),
outc);
params_.weight = shape3d(w_width, w_height, in.depth_ * outc);
params_.has_bias = has_bias;
params_.pad_type = ptype;
params_.w_stride = w_stride;
params_.h_stride = h_stride;
params_.tbl = tbl;
// init padding buffer
if (params_.pad_type == padding::same) {
cws_.prev_delta_padded_.resize(1, vec_t(params_.in_padded.size(), float_t(0)));
}
// set parameters to padding operation
padding_op_ = Conv2dPadding(params_);
}
serial_size_t in_length(serial_size_t in_length,
serial_size_t window_size, padding pad_type) const {
return pad_type == padding::same ?
(in_length + window_size - 1) : in_length;
}
static serial_size_t conv_out_dim(serial_size_t in_width,
serial_size_t in_height,
serial_size_t window_size,
serial_size_t w_stride,
serial_size_t h_stride, padding pad_type) {
return conv_out_length(in_width, window_size, w_stride, pad_type) *
conv_out_length(in_height, window_size, h_stride, pad_type);
}
serial_size_t conv_out_dim(serial_size_t in_width,
serial_size_t in_height,
serial_size_t window_width,
serial_size_t window_height,
serial_size_t w_stride,
serial_size_t h_stride, padding pad_type) const {
return conv_out_length(in_width, window_width, w_stride, pad_type) *
conv_out_length(in_height, window_height, h_stride, pad_type);
}
void createOp() override {
init_backend(layer::engine());
}
void init_backend(const backend_t backend_type) {
core::OpKernelConstruction ctx =
core::OpKernelConstruction(layer::device(), ¶ms_);
if (backend_type == backend_t::internal ||
backend_type == backend_t::nnpack ||
backend_type == backend_t::avx) {
kernel_fwd_.reset(new Conv2dOp(ctx));
kernel_back_.reset(new Conv2dGradOp(ctx));
return;
}
else if (backend_type == backend_t::opencl) {
throw nn_error("Not implemented engine: " + to_string(backend_type));
/*kernel_fwd_.reset(new Conv2dOpenCLForwardOp(ctx));
kernel_back_.reset(new Conv2dOpenCLBackwardOp(ctx));
return;*/
}
else if (backend_type == backend_t::libdnn) {
if (layer::device() == nullptr) return;
kernel_fwd_.reset(new Conv2dLibDNNForwardOp(ctx));
kernel_back_.reset(new Conv2dLibDNNBackwardOp(ctx));
return;
}
else {
throw nn_error("Not supported engine: " + to_string(backend_type));
}
}
private:
/* The convolution parameters */
conv_params params_;
/* Padding operation */
Conv2dPadding padding_op_;
/* Forward and backward ops */
std::shared_ptr<core::OpKernel> kernel_fwd_;
std::shared_ptr<core::OpKernel> kernel_back_;
/* Buffer to store padded data */
struct conv_layer_worker_specific_storage {
tensor_t prev_out_padded_;
tensor_t prev_delta_padded_;
} cws_;
};
} // namespace tiny_dnn
|