1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
/*
Copyright (c) 2013, Taiga Nomi
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the <organization> nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "tiny_dnn/util/util.h"
#include "tiny_dnn/layers/layer.h"
#include <algorithm>
namespace tiny_dnn {
/**
* applies dropout to the input
**/
class dropout_layer : public layer {
public:
typedef activation::identity Activation;
typedef layer Base;
/**
* @param in_dim [in] number of elements of the input
* @param dropout_rate [in] (0-1) fraction of the input units to be dropped
* @param phase [in] initial state of the dropout
**/
dropout_layer(serial_size_t in_dim, float_t dropout_rate, net_phase phase = net_phase::train)
: Base({vector_type::data}, {vector_type::data}),
phase_(phase),
dropout_rate_(dropout_rate),
scale_(float_t(1) / (float_t(1) - dropout_rate_)),
in_size_(in_dim)
{
mask_.resize(1, std::vector<uint8_t>(in_dim));
clear_mask();
}
dropout_layer(const dropout_layer& obj) = default;
virtual ~dropout_layer(){}
#ifdef CNN_USE_DEFAULT_MOVE_CONSTRUCTORS
dropout_layer(dropout_layer&& obj) = default;
dropout_layer& operator=(const dropout_layer& obj) = default;
dropout_layer& operator=(dropout_layer&& obj) = default;
#endif
void set_dropout_rate(float_t rate)
{
dropout_rate_ = rate;
scale_ = float_t(1) / (float_t(1) - dropout_rate_);
}
float_t dropout_rate() const {
return dropout_rate_;
}
///< number of incoming connections for each output unit
serial_size_t fan_in_size() const override
{
return 1;
}
///< number of outgoing connections for each input unit
serial_size_t fan_out_size() const override
{
return 1;
}
std::vector<index3d<serial_size_t>> in_shape() const override {
return{ index3d<serial_size_t>(in_size_, 1, 1) };
}
std::vector<index3d<serial_size_t>> out_shape() const override {
return{ index3d<serial_size_t>(in_size_, 1, 1) };
}
void back_propagation(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
tensor_t& prev_delta = *in_grad[0];
const tensor_t& curr_delta = *out_grad[0];
CNN_UNREFERENCED_PARAMETER(in_data);
CNN_UNREFERENCED_PARAMETER(out_data);
for (serial_size_t sample = 0; sample < static_cast<serial_size_t>(prev_delta.size()); ++sample) {
for (serial_size_t i = 0; i < static_cast<serial_size_t>(curr_delta.size()); i++) {
prev_delta[sample][i] = mask_[sample][i] * curr_delta[sample][i];
}
}
}
void forward_propagation(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
const tensor_t& in = *in_data[0];
tensor_t& out = *out_data[0];
const size_t sample_count = in.size();
if (mask_.size() < sample_count) {
mask_.resize(sample_count, mask_[0]);
}
for (size_t sample = 0, sample_count = in.size(); sample < sample_count; ++sample) {
std::vector<uint8_t>& mask = mask_[sample];
const vec_t& in_vec = in[sample];
vec_t& out_vec = out[sample];
if (phase_ == net_phase::train) {
for (size_t i = 0; i < in_vec.size(); i++)
mask[i] = bernoulli(dropout_rate_);
for (size_t i = 0; i < in_vec.size(); i++)
out_vec[i] = mask[i] * scale_ * in_vec[i];
}
else {
for (size_t i = 0, end = in_vec.size(); i < end; i++)
out_vec[i] = in_vec[i];
}
}
}
/**
* set dropout-context (training-phase or test-phase)
**/
void set_context(net_phase ctx) override
{
phase_ = ctx;
}
std::string layer_type() const override { return "dropout"; }
// currently used by tests only
const std::vector<uint8_t>& get_mask(serial_size_t sample_index) const {
return mask_[sample_index];
}
void clear_mask() {
for (auto& sample : mask_) {
std::fill(sample.begin(), sample.end(), 0);
}
}
template <class Archive>
static void load_and_construct(Archive & ar, cereal::construct<dropout_layer> & construct) {
net_phase phase;
float_t dropout_rate;
serial_size_t in_size;
ar(cereal::make_nvp("in_size", in_size), cereal::make_nvp("dropout_rate", dropout_rate), cereal::make_nvp("phase", phase));
construct(in_size, dropout_rate, phase);
}
template <class Archive>
void serialize(Archive & ar) {
layer::serialize_prolog(ar);
ar(cereal::make_nvp("in_size", in_size_), cereal::make_nvp("dropout_rate", dropout_rate_), cereal::make_nvp("phase", phase_));
}
private:
net_phase phase_;
float_t dropout_rate_;
float_t scale_;
serial_size_t in_size_;
std::vector<std::vector<uint8_t>> mask_;
};
} // namespace tiny_dnn
|