1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
|
/*
Copyright (c) 2013, Taiga Nomi
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the <organization> nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <sstream>
#include <iomanip>
#include <memory>
#include <numeric>
#include <algorithm>
#include <vector>
#include <string>
#include <utility>
#include <queue>
#include "tiny_dnn/node.h"
#include "tiny_dnn/core/backend.h"
#include "tiny_dnn/core/framework/device.fwd.h"
#include "tiny_dnn/util/util.h"
#include "tiny_dnn/util/product.h"
#include "tiny_dnn/util/image.h"
#include "tiny_dnn/util/weight_init.h"
#include "tiny_dnn/optimizers/optimizer.h"
#include "tiny_dnn/activations/activation_function.h"
namespace tiny_dnn {
/**
* base class of all kind of NN layers
*
* sub-class should override these methods:
* - forward_propagation ... body of forward-pass calculation
* - back_propagation ... body of backward-pass calculation
* - in_shape ... specify input data shapes
* - out_shape ... specify output data shapes
* - layer_type ... name of layer
**/
class layer : public node {
public:
friend void connection_mismatch(const layer& from,
const layer& to);
virtual ~layer() = default;
/**
* @brief Defaul layer constructor that instantiates a N-input, M-output layer
*
* @param in_type[N] type of input vector (data, weight, bias...)
* @param out_type[M] type of output vector
*
**/
layer(const std::vector<vector_type>& in_type,
const std::vector<vector_type>& out_type)
: node(static_cast<serial_size_t>(in_type.size()), static_cast<serial_size_t>(out_type.size())),
initialized_(false),
parallelize_(true),
in_channels_(static_cast<serial_size_t>(in_type.size())),
out_channels_(static_cast<serial_size_t>(out_type.size())),
in_type_(in_type),
out_type_(out_type) {
weight_init_ = std::make_shared<weight_init::xavier>();
bias_init_ = std::make_shared<weight_init::constant>();
trainable_ = true;
}
layer(const layer&) = default;
layer &operator =(const layer&) = default;
#ifdef CNN_USE_DEFAULT_MOVE_CONSTRUCTORS
layer(layer&&) = default;
layer &operator = (layer&&) = default;
#endif
void set_parallelize(bool parallelize) {
parallelize_ = parallelize;
}
void set_backend(std::shared_ptr<core::backend> backend) {
backend_ = backend;
}
void set_backend_type(core::backend_t backend_type) {
backend_type_ = backend_type;
}
/////////////////////////////////////////////////////////////////////////
// getter
bool parallelize() const { return parallelize_; }
// TODO(edgar): Deprecated: use the below method
core::backend_t backend_type() const {
return backend_->type();
}
core::backend_t engine() const {
return backend_type_;
}
virtual std::string kernel_file() const {
return std::string("empty_kernel_str");
}
virtual std::string kernel_header() const {
return std::string();
}
virtual void createOp() {
}
void setDevice(const Device& device) {
device_ptr_ = const_cast<Device*>(&device);
}
Device* device() const {
return device_ptr_;
}
std::shared_ptr<core::backend> backend() { return backend_; }
///< number of incoming edges in this layer
serial_size_t in_channels() const { return in_channels_; }
///< number of outgoing edges in this layer
serial_size_t out_channels() const { return out_channels_; }
serial_size_t in_data_size() const {
return sumif(in_shape(), [&](serial_size_t i) { // NOLINT
return in_type_[i] == vector_type::data; }, [](const shape3d& s) {
return s.size(); });
}
serial_size_t out_data_size() const {
return sumif(out_shape(), [&](serial_size_t i) { // NOLINT
return out_type_[i] == vector_type::data; }, [](const shape3d& s) {
return s.size(); });
}
std::vector<shape3d> in_data_shape() {
return filter(in_shape(), [&](size_t i) { // NOLINT
return in_type_[i] == vector_type::data;
});
}
std::vector<shape3d> out_data_shape() {
return filter(out_shape(), [&](size_t i) { // NOLINT
return out_type_[i] == vector_type::data;
});
}
///! @deprecated use in_data_size() instead
serial_size_t in_size() const {
return in_data_size();
}
///! @deprecated use out_data_size() instead
serial_size_t out_size() const {
return out_data_size();
}
std::vector<const vec_t*> weights() const {
std::vector<const vec_t*> v;
for (serial_size_t i = 0; i < in_channels_; i++) {
if (is_trainable_weight(in_type_[i])) {
v.push_back(get_weight_data(i));
}
}
return v;
}
std::vector<vec_t*> weights() {
std::vector<vec_t*> v;
for (serial_size_t i = 0; i < in_channels_; i++) {
if (is_trainable_weight(in_type_[i])) {
v.push_back(get_weight_data(i));
}
}
return v;
}
std::vector<tensor_t*> weights_grads() {
std::vector<tensor_t*> v;
for (serial_size_t i = 0; i < in_channels_; i++) {
if (is_trainable_weight(in_type_[i])) {
v.push_back(ith_in_node(i)->get_gradient());
}
}
return v;
}
std::vector<edgeptr_t> inputs() {
std::vector<edgeptr_t> nodes;
for (serial_size_t i = 0; i < in_channels_; i++) {
nodes.push_back(ith_in_node(i));
}
return nodes;
}
std::vector<edgeptr_t> outputs() {
std::vector<edgeptr_t> nodes;
for (serial_size_t i = 0; i < out_channels_; i++) {
nodes.push_back(ith_out_node(i));
}
return nodes;
}
std::vector<edgeptr_t> outputs() const {
std::vector<edgeptr_t> nodes;
for (serial_size_t i = 0; i < out_channels_; i++) {
nodes.push_back(const_cast<layerptr_t>(this)
->ith_out_node(i));
}
return nodes;
}
void set_out_grads(const std::vector<tensor_t>& grad) {
serial_size_t j = 0;
for (serial_size_t i = 0; i < out_channels_; i++) {
if (out_type_[i] != vector_type::data) continue;
assert(j < grad.size());
*ith_out_node(i)->get_gradient() = grad[j++];
}
}
void set_in_data(const std::vector<tensor_t>& data) {
serial_size_t j = 0;
for (serial_size_t i = 0; i < in_channels_; i++) {
if (in_type_[i] != vector_type::data) continue;
assert(j < data.size());
*ith_in_node(i)->get_data() = data[j++];
}
}
std::vector<tensor_t> output() const {
std::vector<tensor_t> out;
for (serial_size_t i = 0; i < out_channels_; i++) {
if (out_type_[i] == vector_type::data) {
out.push_back(*(const_cast<layerptr_t>(this))
->ith_out_node(i)->get_data());
}
}
return out;
}
std::vector<vector_type> in_types() const { return in_type_; }
std::vector<vector_type> out_types() const { return out_type_; }
void set_trainable(bool trainable) { trainable_ = trainable; }
bool trainable() const { return trainable_; }
/**
* return output value range
* used only for calculating target value from label-id in final(output) layer
* override properly if the layer is intended to be used as output layer
**/
virtual std::pair<float_t, float_t> out_value_range() const {
return { float_t(0.0), float_t(1.0) };
}
/**
* array of input shapes (width x height x depth)
**/
virtual std::vector<shape3d> in_shape() const = 0;
/**
* array of output shapes (width x height x depth)
**/
virtual std::vector<shape3d> out_shape() const = 0;
/**
* name of layer, should be unique for each concrete class
**/
virtual std::string layer_type() const = 0;
/**
* number of incoming connections for each output unit
* used only for weight/bias initialization methods which require fan-in size (e.g. xavier)
* override if the layer has trainable weights, and scale of initialization is important
**/
virtual serial_size_t fan_in_size() const {
return in_shape()[0].width_;
}
/**
* number of outgoing connections for each input unit
* used only for weight/bias initialization methods which require fan-out size (e.g. xavier)
* override if the layer has trainable weights, and scale of initialization is important
**/
virtual serial_size_t fan_out_size() const {
return out_shape()[0].width_;
}
/////////////////////////////////////////////////////////////////////////
// setter
template <typename WeightInit>
layer& weight_init(const WeightInit& f) {
weight_init_ = std::make_shared<WeightInit>(f);
return *this;
}
template <typename BiasInit>
layer& bias_init(const BiasInit& f) {
bias_init_ = std::make_shared<BiasInit>(f);
return *this;
}
template <typename WeightInit>
layer& weight_init(std::shared_ptr<WeightInit> f) {
weight_init_ = f;
return *this;
}
template <typename BiasInit>
layer& bias_init(std::shared_ptr<BiasInit> f) {
bias_init_ = f;
return *this;
}
/////////////////////////////////////////////////////////////////////////
// save/load
template <typename Archive>
void serialize(Archive & ar) {
auto all_weights = weights();
for (auto weight : all_weights) {
ar(*weight);
}
initialized_ = true;
}
virtual void save(std::ostream& os) const { // NOLINT
/*if (is_exploded()) {
throw nn_error("failed to save weights because of infinite weight");
}*/
auto all_weights = weights();
for (auto& weight : all_weights) {
for (auto w : *weight) os << w << " ";
}
}
virtual void load(std::istream& is) { // NOLINT
auto all_weights = weights();
for (auto& weight : all_weights) {
for (auto& w : *weight) is >> w;
}
initialized_ = true;
}
virtual void load(const std::vector<float_t>& src, int& idx) { // NOLINT
auto all_weights = weights();
for (auto& weight : all_weights) {
for (auto& w : *weight) w = src[idx++];
}
initialized_ = true;
}
/////////////////////////////////////////////////////////////////////////
// visualize
///< visualize latest output of this layer
///< default implementation interpret output as 1d-vector,
///< so "visual" layer(like convolutional layer) should override this for better visualization.
virtual image<> output_to_image(size_t channel = 0) const {
const vec_t* output = &(*(outputs()[channel]->get_data()))[0];
return vec2image<unsigned char>(*output, out_shape()[channel]);
}
/////////////////////////////////////////////////////////////////////////
// fprop/bprop
/**
* @param in_data input vectors of this layer (data, weight, bias)
* @param out_data output vectors
**/
virtual void forward_propagation(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) = 0;
/**
* return delta of previous layer (delta=\frac{dE}{da}, a=wx in fully-connected layer)
* @param in_data input vectors (same vectors as forward_propagation)
* @param out_data output vectors (same vectors as forward_propagation)
* @param out_grad gradient of output vectors (i-th vector correspond with out_data[i])
* @param in_grad gradient of input vectors (i-th vector correspond with in_data[i])
**/
virtual void back_propagation(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) = 0;
/**
* return delta2 of previous layer (delta2=\frac{d^2E}{da^2}, diagonal of hessian matrix)
* it is never called if optimizer is hessian-free
**/
//virtual void back_propagation_2nd(const std::vector<vec_t>& delta_in) = 0;
// called afrer updating weight
virtual void post_update() {}
/**
* notify changing context (train <=> test)
**/
virtual void set_context(net_phase ctx) {
CNN_UNREFERENCED_PARAMETER(ctx);
}
/* @brief Performs layer forward operation given an input tensor and
* returns the computed data in tensor form.
*
* @param input Vector of `tensor_t` with incoming data.
*
* Internally, it first allocates data without resetting the weights,
* forwards the input data to the computational graph, inside the
* forward() method the data from the computational embedded to container
* to finally be forwarded to the computational operation kernels.
*
* TODO: Probably there's an overhead of moving from/to the computational
* graph. Will be this overhead reduced once we have the Tensor
* class integrated?
*/
std::vector<tensor_t> forward(const std::vector<tensor_t>& input) { // for test
// allocate data in the computational graph without
// resetting the weights.
setup(false);
// the incoming data is forwarded to the computational graph.
set_in_data(input);
// pick up the data from the computational graph and perform
// computation.
forward();
// retrieve computed data and return values in form of 4D tensor.
return output();
}
std::vector<tensor_t> backward(const std::vector<tensor_t>& out_grads) { // for test
setup(false);
set_out_grads(out_grads);
backward();
return map_<tensor_t>(inputs(), [](edgeptr_t e) {
return *e->get_gradient();
});
}
/* @brief The purpose of this method is to forward the data from the
* computational graph to the layer interface.
*
* This is one of the out of two core (forward/backward) methods that
* retrieves the data allocated in the heap by the computational graph
* and constructs the containers to handle the computation by batches.
* Additionally, the sample count a.k.a number of batches is set.
*
* Note: in_data and out_data attempt to contain tensors. However, they
* are not real tensors since tensor_t have three dimensions instead of
* four. For this reason they are embedded in to std::vector. Also note
* that when std::vector<tensor_t*> it's constructed we cannot assure
* that data is contiguous.
*
* After Tensor class integration we should be able to avoid to have
* in_data and out_data in vectors since Tensor class itself can handle
* batches storage in one single vector with contiguous data.
*
*/
void forward() {
// the computational graph
std::vector<tensor_t*> in_data, out_data;
// Organize input/output vectors from storage (computational graph).
// Internally ith_in_node() will create a connection/edge in the
// computational graph and will allocate memory in case that it's not
// done yet.
for (serial_size_t i = 0; i < in_channels_; i++) {
in_data.push_back(ith_in_node(i)->get_data());
}
// resize outs and stuff to have room for every input sample in
// the batch
set_sample_count(static_cast<serial_size_t>(in_data[0]->size()));
// Internally ith_out_node() will create a connection/edge to the
// computational graph and will allocate memory in case that it's not
// done yet. In addition, gradient vector are initialized to default
// values.
for (serial_size_t i = 0; i < out_channels_; i++) {
out_data.push_back(ith_out_node(i)->get_data());
ith_out_node(i)->clear_grads();
}
// call the forward computation kernel/routine
forward_propagation(in_data, out_data);
}
void backward() {
std::vector<tensor_t*> in_data, out_data, in_grad, out_grad;
// organize input/output vectors from storage
for (serial_size_t i = 0; i < in_channels_; i++) {
in_data.push_back(ith_in_node(i)->get_data());
}
for (serial_size_t i = 0; i < out_channels_; i++) {
out_data.push_back(ith_out_node(i)->get_data());
}
for (serial_size_t i = 0; i < in_channels_; i++) {
in_grad.push_back(ith_in_node(i)->get_gradient());
}
for (serial_size_t i = 0; i < out_channels_; i++) {
out_grad.push_back(ith_out_node(i)->get_gradient());
}
back_propagation(in_data, out_data, out_grad, in_grad);
}
/* @brief Allocates data in the computational graph and reset weights if
* it's needed or the data is not already initialized.
*
* @param reset_weight Boolean value to force to reset the weights.
* Weights will be automatically reset if the are not initialized.
*
*/
void setup(bool reset_weight) {
// The input shape (width x height x depth) must be equal to the number
// of input channels a.k.a the number of incoming vectors or 'edges' in
// the computational nomenclature. Same is applied to output shape and
// numbers of output edges.
if (in_shape().size() != in_channels_ ||
out_shape().size() != out_channels_) {
throw nn_error("Connection mismatch at setup layer");
}
// An 'edge' is created in the computational graph from the current
// layer/node to each output node and allocates the needed memory.
// The number of output nodes is determined by the layer interface.
// In order to handle graph based networks, which a layer/node might
// have multiple input/output connections, we need to check that the
// connection edge does not already exists if we don't want duplicated
// memory allocation.
for (size_t i = 0; i < out_channels_; i++) {
if (!next_[i]) {
// connection edge doesn't exist, so we proceed to allocate the
// necessary memory.
next_[i] = std::make_shared<edge>(
this, out_shape()[i], out_type_[i]);
}
}
// reset the weights if necessary, or in case that the data is
// still not initialized.
if (reset_weight || !initialized_) {
init_weight();
}
}
/* @brief Initializes the vectors containing the trainable data.
*
* In case that a layer/node is set to be not trainable, it does
* nothing and returns a void. Otherwise, for each input connection
* and depending of the data nature (weight or bias) calls their
* pertinent initialization function and fill the vectors with the
* data generated by the mentioned functions.
*
*/
void init_weight() {
// layer/node is not trainable, do nothing and mark the layer/node
// as initialized.
if (!trainable_) {
initialized_ = true;
return;
}
// Fill vector values with data generated by the initialization
// function. The pointer to the data is obtained from the
// computational graph and the methods fan_in_size() and fan_out_size()
// return the number of incoming/outcoming connections for each
// input/output unit.
for (serial_size_t i = 0; i < in_channels_; i++) {
switch (in_type_[i]) {
// fill vectors of weight type
case vector_type::weight:
weight_init_->fill(get_weight_data(i),
fan_in_size(), fan_out_size());
break;
// fill vector of bias type
case vector_type::bias:
bias_init_->fill(get_weight_data(i),
fan_in_size(), fan_out_size());
break;
default:
break;
}
}
// in case we succeed with data initialization, we mark the
// layer/node as initialized.
initialized_ = true;
}
void clear_grads() {
for (serial_size_t i = 0; i < static_cast<serial_size_t>(in_type_.size()); i++) {
ith_in_node(i)->clear_grads();
}
}
void update_weight(optimizer *o, serial_size_t batch_size) {
float_t rcp_batch_size = float_t(1) / float_t(batch_size);
vec_t diff;
for (serial_size_t i = 0; i < static_cast<serial_size_t>(in_type_.size()); i++) {
if (trainable() && is_trainable_weight(in_type_[i])) {
vec_t& target = *get_weight_data(i);
ith_in_node(i)->merge_grads(&diff);
std::transform(diff.begin(), diff.end(),
diff.begin(), [&](float_t x) { // NOLINT
return x * rcp_batch_size; });
// parallelize only when target size is big enough to mitigate
// thread spawning overhead.
bool parallelize = (target.size() >= 512);
o->update(diff, target, parallelize);
}
}
clear_grads();
post_update();
}
bool has_same_weights(const layer& rhs, float_t eps) const {
auto w1 = weights();
auto w2 = rhs.weights();
if (w1.size() != w2.size()) return false;
for (size_t i = 0; i < w1.size(); i++) {
if (w1[i]->size() != w2[i]->size()) return false;
for (size_t j = 0; j < w1[i]->size(); j++) {
if (std::abs(w1[i]->at(j) - w2[i]->at(j)) > eps) return false;
}
}
return true;
}
virtual void set_sample_count(serial_size_t sample_count) {
// increase the size if necessary - but do not decrease
auto resize = [sample_count](tensor_t* tensor) {
tensor->resize(sample_count, (*tensor)[0]);
};
for (serial_size_t i = 0; i < in_channels_; i++) {
if (!is_trainable_weight(in_type_[i])) {
resize(ith_in_node(i)->get_data());
}
resize(ith_in_node(i)->get_gradient());
}
for (serial_size_t i = 0; i < out_channels_; i++) {
if (!is_trainable_weight(out_type_[i])) {
resize(ith_out_node(i)->get_data());
}
resize(ith_out_node(i)->get_gradient());
}
}
/**
* generate layer from cereal's Archive
**/
template <typename InputArchive>
static std::shared_ptr<layer> load_layer(InputArchive & ia);
template <typename OutputArchive>
static void save_layer(OutputArchive & oa, const layer& l);
template <class Archive>
void serialize_prolog(Archive & ar);
protected:
/** Flag indication whether the layer/node is initialized */
bool initialized_;
/** Flag indicating whether the layer/node operations ara paralellized */
bool parallelize_;
/** The number of input vectors/edges */
serial_size_t in_channels_;
/** The number of output vectors/edges */
serial_size_t out_channels_;
/** Vector containing the type of data for inputs */
std::vector<vector_type> in_type_;
/** Vector containing the type of data for outputs */
std::vector<vector_type> out_type_;
/** The current backend type for operations */
core::backend_t backend_type_;
/** The backend instance (deprecated) */
std::shared_ptr<core::backend> backend_;
/** Pointer to the device on which the layer/node will run */
Device* device_ptr_ = nullptr;
private:
/** Flag indicating whether the layer/node parameters are trainable */
bool trainable_;
/** Pointer to the function for weights initialization */
std::shared_ptr<weight_init::function> weight_init_;
/** Pointer to the function for biases initialization */
std::shared_ptr<weight_init::function> bias_init_;
/* @brief Allocates the necessary edge memory in a specific
* incoming connection.
*
* @param i The position to store the previous edge.
*
* Graphical explanation:
*
* nullptr -- |edge| -- prev(i) ---- |layer|
* nullptr -- prev(i+1) -ยด
*/
void alloc_input(serial_size_t i) const {
// the created incoming edge won't have a previous connection,
// for this reason first parameter is a nullptr.
prev_[i] = std::make_shared<edge>(nullptr, in_shape()[i], in_type_[i]);
}
/* @brief Allocates the necessary edge memory in a specific
* outcoming connection.
*
* @param i The position to store the next edge.
*
* Graphical explanation:
*
* |layer| -- next(i) ---- |edge|
* `- next(i+1) -- nullptr
*/
void alloc_output(serial_size_t i) const {
// the created outcoming will have the current layer as the
// previous node.
next_[i] = std::make_shared<edge>((layer*)this,
out_shape()[i], out_type_[i]);
}
/* @brief Creates an edge between the current node and one incoming
* or previous node.
*
* @param i The position to store the previous edge.
*
* The method checks if the edge already exists, otherwise we create it
* and the necessary memory it's allocated. The method returns the pointer
* to the previous edge.
*/
edgeptr_t ith_in_node(serial_size_t i) {
// in case that the edge doesn't exist, we create it
if (!prev_[i]) alloc_input(i);
return prev()[i];
}
/* @brief Creates an edge between the current node and one outcoming
* or next node.
*
* @param i The position to store the next edge.
*
* The method checks if the edge already exists, otherwise we create it
* and the necessary memory it's allocated. The method returns the pointer
* to the next edge.
*/
edgeptr_t ith_out_node(serial_size_t i) {
// in case that the edge doesn't exist, we create it
if (!next_[i]) alloc_output(i);
return next()[i];
}
/* @brief Retrieves weight vector from incoming edge
* @param i The position of incoming edge.
*
* Returns the mutable pointer to the edge raw data.
*/
vec_t* get_weight_data(serial_size_t i) {
assert(is_trainable_weight(in_type_[i]));
return &(*(ith_in_node(i)->get_data()))[0];
}
/* @brief Retrieves weight vector from incoming edge
* @param i The position of incoming edge.
*
* Returns the non mutable pointer to the edge raw data.
*/
const vec_t* get_weight_data(serial_size_t i) const {
assert(is_trainable_weight(in_type_[i]));
return &(*(const_cast<layerptr_t>(this)->ith_in_node(i)->get_data()))[0];
}
};
inline void connect(layerptr_t head,
layerptr_t tail,
serial_size_t head_index = 0,
serial_size_t tail_index = 0) {
auto out_shape = head->out_shape()[head_index];
auto in_shape = tail->in_shape()[tail_index];
head->setup(false);
if (out_shape.size() != in_shape.size()) {
connection_mismatch(*head, *tail);
}
if (!head->next_[head_index]) {
throw nn_error("output edge must not be null");
}
tail->prev_[tail_index] = head->next_[head_index];
tail->prev_[tail_index]->add_next_node(tail);
}
inline layer& operator << (layer& lhs, layer& rhs) {
connect(&lhs, &rhs);
return rhs;
}
template <typename Char, typename CharTraits>
std::basic_ostream<Char, CharTraits>& operator << (
std::basic_ostream<Char, CharTraits>& os, const layer& v) {
v.save(os);
return os;
}
template <typename Char, typename CharTraits>
std::basic_istream<Char, CharTraits>& operator >> (
std::basic_istream<Char, CharTraits>& os, layer& v) {
v.load(os);
return os;
}
// error message functions
inline void connection_mismatch(const layer& from, const layer& to) {
std::ostringstream os;
os << std::endl;
os << "output size of Nth layer must be equal to input of (N+1)th layer\n";
os << "layerN: " << std::setw(12) << from.layer_type() << " in:"
<< from.in_data_size() << "("
<< from.in_shape() << "), " << "out:"
<< from.out_data_size() << "("
<< from.out_shape() << ")\n";
os << "layerN+1: " << std::setw(12) << to.layer_type() << " in:"
<< to.in_data_size() << "("
<< to.in_shape() << "), " << "out:"
<< to.out_data_size() << "("
<< to.out_shape() << ")\n";
os << from.out_data_size() << " != " << to.in_data_size() << std::endl;
std::string detail_info = os.str();
throw nn_error("layer dimension mismatch!" + detail_info);
}
inline void data_mismatch(const layer& layer, const vec_t& data) {
std::ostringstream os;
os << std::endl;
os << "data dimension: " << data.size() << "\n";
os << "network dimension: " << layer.in_data_size() << "("
<< layer.layer_type() << ":"
<< layer.in_shape() << ")\n";
std::string detail_info = os.str();
throw nn_error("input dimension mismatch!" + detail_info);
}
inline void pooling_size_mismatch(serial_size_t in_width,
serial_size_t in_height,
serial_size_t pooling_size_x,
serial_size_t pooling_size_y) {
std::ostringstream os;
os << std::endl;
os << "WxH:" << in_width << "x" << in_height << std::endl;
os << "pooling-size:" << pooling_size_x << "x" << pooling_size_y << std::endl;
std::string detail_info = os.str();
throw nn_error("width/height not multiple of pooling size" + detail_info);
}
template <typename T, typename U>
void graph_traverse(layer *root_node, T&& node_callback, U&& edge_callback) {
std::unordered_set<layer*> visited;
std::queue<layer*> S;
S.push(root_node);
while (!S.empty()) {
layer *curr = S.front();
S.pop();
visited.insert(curr);
node_callback(*curr);
auto edges = curr->next();
for (auto e : edges) {
if (e != nullptr)
edge_callback(*e);
}
auto prev = curr->prev_nodes();
for (auto p : prev) {
// TODO(nyanp): refactoring
// which type of refactoring do you have in mind for that?
layer* l = dynamic_cast<layer*>(p);
if (visited.find(l) == visited.end()) {
S.push(l);
}
}
auto next = curr->next_nodes();
for (auto n : next) {
// TODO(nyanp): refactoring
// which type of refactoring do you have in mind for that?
layer* l = dynamic_cast<layer*>(n);
if (visited.find(l) == visited.end()) {
S.push(l);
}
}
}
}
} // namespace tiny_dnn
|