1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
/*
Copyright (c) 2013, Taiga Nomi
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the <organization> nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "tiny_dnn/util/util.h"
#include <algorithm>
namespace tiny_dnn {
enum class norm_region {
across_channels,
within_channels
};
/**
* local response normalization
*/
template<typename Activation>
class lrn_layer : public feedforward_layer<Activation> {
public:
CNN_USE_LAYER_MEMBERS;
typedef feedforward_layer<Activation> Base;
lrn_layer(const shape3d& in_shape,
serial_size_t local_size,
float_t alpha = 1.0,
float_t beta = 5.0,
norm_region region = norm_region::across_channels)
: Base({ vector_type::data }),
in_shape_(in_shape),
size_(local_size),
alpha_(alpha),
beta_(beta),
region_(region),
in_square_(in_shape_.area()) {
}
/**
* @param layer [in] the previous layer connected to this
* @param local_size [in] the number of channels(depths) to sum over
* @param in_channels [in] the number of channels of input data
* @param alpha [in] the scaling parameter (same to caffe's LRN)
* @param beta [in] the scaling parameter (same to caffe's LRN)
**/
lrn_layer(layer* prev,
serial_size_t local_size,
float_t alpha = 1.0,
float_t beta = 5.0,
norm_region region = norm_region::across_channels)
: lrn_layer(prev->out_data_shape()[0], local_size, alpha, beta, region) {}
/**
* @param in_width [in] the width of input data
* @param in_height [in] the height of input data
* @param local_size [in] the number of channels(depths) to sum over
* @param in_channels [in] the number of channels of input data
* @param alpha [in] the scaling parameter (same to caffe's LRN)
* @param beta [in] the scaling parameter (same to caffe's LRN)
**/
lrn_layer(serial_size_t in_width,
serial_size_t in_height,
serial_size_t local_size,
serial_size_t in_channels,
float_t alpha = 1.0,
float_t beta = 5.0,
norm_region region = norm_region::across_channels)
: lrn_layer(shape3d{in_width, in_height, in_channels}, local_size, alpha, beta, region){}
serial_size_t fan_in_size() const override {
return size_;
}
serial_size_t fan_out_size() const override {
return size_;
}
std::vector<shape3d> in_shape() const override {
return { in_shape_ };
}
std::vector<shape3d> out_shape() const override {
return { in_shape_, in_shape_ };
}
std::string layer_type() const override { return "lrn"; }
void forward_propagation(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
// @todo revise the parallelism strategy
for (size_t sample = 0, sample_count = in_data[0]->size(); sample < sample_count; ++sample) {
vec_t& in = (*in_data[0])[sample];
vec_t& out = (*out_data[0])[sample];
vec_t& a = (*out_data[1])[sample];
if (region_ == norm_region::across_channels) {
forward_across(in, a);
}
else {
forward_within(in, a);
}
for_i(parallelize_, out.size(), [&](int i) {
out[i] = h_.f(a, i);
});
}
}
void back_propagation(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
CNN_UNREFERENCED_PARAMETER(in_data);
CNN_UNREFERENCED_PARAMETER(out_data);
CNN_UNREFERENCED_PARAMETER(out_grad);
CNN_UNREFERENCED_PARAMETER(in_grad);
throw nn_error("not implemented");
}
template <class Archive>
static void load_and_construct(Archive & ar, cereal::construct<lrn_layer> & construct) {
shape3d in_shape;
serial_size_t size;
float_t alpha, beta;
norm_region region;
ar(cereal::make_nvp("in_shape", in_shape),
cereal::make_nvp("size", size),
cereal::make_nvp("alpha", alpha),
cereal::make_nvp("beta", beta),
cereal::make_nvp("region", region));
construct(in_shape, size, alpha, beta, region);
}
template <class Archive>
void serialize(Archive & ar) {
layer::serialize_prolog(ar);
ar(cereal::make_nvp("in_shape", in_shape_),
cereal::make_nvp("size", size_),
cereal::make_nvp("alpha", alpha_),
cereal::make_nvp("beta", beta_),
cereal::make_nvp("region", region_));
}
private:
void forward_across(const vec_t& in, vec_t& out) {
std::fill(in_square_.begin(), in_square_.end(), float_t(0));
for (serial_size_t i = 0; i < size_ / 2; i++) {
serial_size_t idx = in_shape_.get_index(0, 0, i);
add_square_sum(&in[idx], in_shape_.area(), &in_square_[0]);
}
serial_size_t head = size_ / 2;
long tail = static_cast<long>(head) - static_cast<long>(size_);
serial_size_t channels = in_shape_.depth_;
const serial_size_t wxh = in_shape_.area();
const float_t alpha_div_size = alpha_ / size_;
for (serial_size_t i = 0; i < channels; i++, head++, tail++) {
if (head < channels)
add_square_sum(&in[in_shape_.get_index(0, 0, head)], wxh, &in_square_[0]);
if (tail >= 0)
sub_square_sum(&in[in_shape_.get_index(0, 0, tail)], wxh, &in_square_[0]);
float_t *dst = &out[in_shape_.get_index(0, 0, i)];
const float_t *src = &in[in_shape_.get_index(0, 0, i)];
for (serial_size_t j = 0; j < wxh; j++)
dst[j] = src[j] * std::pow(float_t(1) + alpha_div_size * in_square_[j], -beta_);
}
}
void forward_within(const vec_t& in, vec_t& out) {
CNN_UNREFERENCED_PARAMETER(in);
CNN_UNREFERENCED_PARAMETER(out);
throw nn_error("not implemented");
}
void add_square_sum(const float_t *src, serial_size_t size, float_t *dst) {
for (serial_size_t i = 0; i < size; i++)
dst[i] += src[i] * src[i];
}
void sub_square_sum(const float_t *src, serial_size_t size, float_t *dst) {
for (serial_size_t i = 0; i < size; i++)
dst[i] -= src[i] * src[i];
}
shape3d in_shape_;
serial_size_t size_;
float_t alpha_, beta_;
norm_region region_;
vec_t in_square_;
};
} // namespace tiny_dnn
|