File: max_pooling_layer.h

package info (click to toggle)
tiny-dnn 1.0.0a3%2Bds-5
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 4,784 kB
  • sloc: cpp: 16,471; ansic: 11,829; lisp: 3,682; python: 3,422; makefile: 208
file content (310 lines) | stat: -rw-r--r-- 12,278 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
/*
    Copyright (c) 2015, Taiga Nomi
    All rights reserved.

    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions are met:
    * Redistributions of source code must retain the above copyright
    notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
    notice, this list of conditions and the following disclaimer in the
    documentation and/or other materials provided with the distribution.
    * Neither the name of the <organization> nor the
    names of its contributors may be used to endorse or promote products
    derived from this software without specific prior written permission.

    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
    EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
    WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
    DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
    DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
    LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
    ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once

#include <string>
#include <vector>
#include <algorithm>

#include "tiny_dnn/core/backend_tiny.h"
#include "tiny_dnn/core/backend_nnp.h"
#include "tiny_dnn/core/backend_dnn.h"
#ifdef CNN_USE_AVX
#include "tiny_dnn/core/backend_avx.h"
#endif

#include "tiny_dnn/core/kernels/maxpool_op.h"
#include "tiny_dnn/core/kernels/maxpool_grad_op.h"

#include "tiny_dnn/util/util.h"
#include "tiny_dnn/util/image.h"
#include "tiny_dnn/activations/activation_function.h"

namespace tiny_dnn {

/**
 * applies max-pooing operaton to the spatial data
 **/
template <typename Activation = activation::identity>
class max_pooling_layer : public feedforward_layer<Activation> {
 public:
    CNN_USE_LAYER_MEMBERS;
    typedef feedforward_layer<Activation> Base;

    /**
     * @param in_width     [in] width of input image
     * @param in_height    [in] height of input image
     * @param in_channels  [in] the number of input image channels(depth)
     * @param pooling_size [in] factor by which to downscale
     **/
    max_pooling_layer(serial_size_t in_width,
                      serial_size_t in_height,
                      serial_size_t in_channels,
                      serial_size_t pooling_size,
                      backend_t  backend_type = core::default_engine())
        : max_pooling_layer(in_width, in_height, in_channels, pooling_size,
                            pooling_size, backend_type) {}

    max_pooling_layer(const shape3d& in_shape,
                      serial_size_t     pooling_size,
                      serial_size_t     stride,
                      backend_t      backend_type = core::default_engine())
        : max_pooling_layer(in_shape.width_, in_shape.height_, in_shape.depth_,
                            pooling_size, stride, backend_type) {}

    max_pooling_layer(serial_size_t in_width,
                      serial_size_t in_height,
                      serial_size_t in_channels,
                      serial_size_t pooling_size,
                      serial_size_t stride,
                      backend_t  backend_type = core::default_engine())
        : max_pooling_layer(in_width, in_height, in_channels, pooling_size,
                            pooling_size, stride, stride, padding::valid,
                            backend_type) {}

    /**
     * @param in_width     [in] width of input image
     * @param in_height    [in] height of input image
     * @param in_channels  [in] the number of input image channels(depth)
     * @param pooling_size [in] factor by which to downscale
     * @param stride       [in] interval at which to apply the filters to the input
    **/
    max_pooling_layer(serial_size_t in_width,
                      serial_size_t in_height,
                      serial_size_t in_channels,
                      serial_size_t pooling_size_x,
                      serial_size_t pooling_size_y,
                      serial_size_t stride_x,
                      serial_size_t stride_y,
                      padding    pad_type = padding::valid,
                      backend_t  backend_type = core::default_engine())
            : Base({ vector_type::data }) {
        set_maxpool_params(
            shape3d(in_width, in_height, in_channels),
            shape3d(conv_out_length(in_width, pooling_size_x, stride_x, pad_type),
                    conv_out_length(in_height, pooling_size_y, stride_y, pad_type),
                    in_channels),
            pooling_size_x, pooling_size_y, stride_x, stride_y, pad_type);

        init_connection();
        init_backend(backend_type);
        Base::set_backend_type(backend_type);
    }

    // move constructor
    max_pooling_layer(max_pooling_layer&& other)  // NOLINT
            : Base(std::move(other))
            , params_(std::move(other.params_)) {
        init_connection();
        init_backend(std::move(Base::engine()));
    }

    serial_size_t fan_in_size() const override {
        return static_cast<serial_size_t>(params_.out2in[0].size());
    }

    serial_size_t fan_out_size() const override {
        return 1;
    }

    void forward_propagation(const std::vector<tensor_t*>& in_data,
                             std::vector<tensor_t*>&       out_data) override {
	// forward convolutional op context
        auto ctx = OpKernelContext(in_data, out_data);
             ctx.setParallelize(layer::parallelize());
             ctx.setEngine(layer::engine());

        // launch convolutional kernel
        kernel_fwd_->compute(ctx);

        // activations
        this->forward_activation(*out_data[0], *out_data[1]);
    }

    void back_propagation(const std::vector<tensor_t*>& in_data,
                          const std::vector<tensor_t*>& out_data,
                          std::vector<tensor_t*>&       out_grad,
                          std::vector<tensor_t*>&       in_grad) override {
	// activations
        // TODO(edgar/nyanp): refactor and move activations outside
        this->backward_activation(*out_grad[0], *out_data[0], *out_grad[1]);

        // backward convolutional op context
        auto ctx = OpKernelContext(in_data, out_data, out_grad, in_grad);
             ctx.setParallelize(layer::parallelize());
             ctx.setEngine(layer::engine());

        // launch convolutional kernel
        kernel_back_->compute(ctx);
    }

    std::vector<index3d<serial_size_t>>
    in_shape() const override { return { params_.in }; }

    std::vector<index3d<serial_size_t>>
    out_shape() const override { return { params_.out, params_.out }; }

    std::string layer_type() const override {
        return std::string("max-pool");
    }

    std::string kernel_file() const override {
        return std::string("../tiny_cnn/core/kernels/cl_kernels/pooling.cl");
    }

    std::pair<serial_size_t, serial_size_t> pool_size() const {
	return std::make_pair(params_.pool_size_x, params_.pool_size_y);
    }

    void set_sample_count(serial_size_t sample_count) override {
        Base::set_sample_count(sample_count);
        params_.out2inmax.resize(
	     sample_count, std::vector<serial_size_t>(params_.out.size()));
    }


    template <class Archive>
    static void
    load_and_construct(Archive & ar,
		       cereal::construct<max_pooling_layer> & construct) {
        shape3d in;
        serial_size_t stride_x, stride_y, pool_size_x, pool_size_y;
        padding pad_type;

        ar(cereal::make_nvp("in_size", in),
           cereal::make_nvp("pool_size_x", pool_size_x),
           cereal::make_nvp("pool_size_y", pool_size_y),
           cereal::make_nvp("stride_x", stride_x),
           cereal::make_nvp("stride_y", stride_y),
           cereal::make_nvp("pad_type", pad_type));
        construct(in.width_, in.height_, in.depth_, pool_size_x, pool_size_y,
		  stride_x, stride_y, pad_type);
    }

    template <class Archive>
    void serialize(Archive & ar) {
        layer::serialize_prolog(ar);
        ar(cereal::make_nvp("in_size", params_.in),
            cereal::make_nvp("pool_size_x", params_.pool_size_x),
            cereal::make_nvp("pool_size_y", params_.pool_size_y),
            cereal::make_nvp("stride_x", params_.stride_x),
            cereal::make_nvp("stride_y", params_.stride_y),
            cereal::make_nvp("pad_type", params_.pad_type));
    }

private:
    /* The Max Poling operation params */
    maxpool_params params_;

    /* Forward and backward ops */
    std::shared_ptr<core::OpKernel> kernel_fwd_;
    std::shared_ptr<core::OpKernel> kernel_back_;

    void connect_kernel(serial_size_t pooling_size_x,
                        serial_size_t pooling_size_y,
                        serial_size_t outx,
                        serial_size_t outy,
                        serial_size_t c) {
        serial_size_t dxmax = static_cast<serial_size_t>(
            std::min(static_cast<serial_size_t>(pooling_size_x),
                     params_.in.width_ - outx * params_.stride_x));

        serial_size_t dymax = static_cast<serial_size_t>(
            std::min(static_cast<serial_size_t>(pooling_size_y),
                     params_.in.height_ - outy * params_.stride_y));

        for (serial_size_t dy = 0; dy < dymax; dy++) {
            for (serial_size_t dx = 0; dx < dxmax; dx++) {
                serial_size_t in_index = params_.in.get_index(
                    static_cast<serial_size_t>(outx * params_.stride_x + dx),
                    static_cast<serial_size_t>(outy * params_.stride_y + dy), c);
                serial_size_t out_index = params_.out.get_index(outx, outy, c);

                if (in_index >= params_.in2out.size()) {
                    throw nn_error("index overflow");
                }
                if (out_index >= params_.out2in.size()) {
                    throw nn_error("index overflow");
                }
                params_.in2out[in_index] = out_index;
                params_.out2in[out_index].push_back(in_index);
            }
        }
    }

    void init_connection() {
        params_.in2out.resize(params_.in.size());
        params_.out2in.resize(params_.out.size());

        for (serial_size_t c = 0; c < params_.in.depth_; ++c) {
            for (serial_size_t y = 0; y < params_.out.height_; ++y) {
                for (serial_size_t x = 0; x < params_.out.width_; ++x) {
                    connect_kernel(params_.pool_size_x,
                                   params_.pool_size_y,
                                   x, y, c);
                }
            }
        }
    }

    void init_backend(backend_t backend_type) {
	core::OpKernelConstruction ctx =
        core::OpKernelConstruction(layer::device(), &params_);

        if (backend_type == backend_t::internal ||
	    backend_type == backend_t::nnpack   ||
            backend_type == backend_t::avx) {

            kernel_fwd_.reset(new MaxPoolOp(ctx));
            kernel_back_.reset(new MaxPoolGradOp(ctx));
            return;
        }
        else {
            throw nn_error("Not supported engine: " + to_string(backend_type));
        }

    }

    void set_maxpool_params(const shape3d& in,
                            const shape3d& out,
                            serial_size_t pooling_size_x,
                            serial_size_t pooling_size_y,
                            serial_size_t stride_x,
                            serial_size_t stride_y,
                            padding pad_type) {
        params_.in          = in;
        params_.out         = out;
        params_.pool_size_x = pooling_size_x;
        params_.pool_size_y = pooling_size_y;
        params_.stride_x    = stride_x;
        params_.stride_y    = stride_y;
        params_.pad_type    = pad_type;
    }
};

}  // namespace tiny_dnn