1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
/*
Copyright (c) 2013, Taiga Nomi
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the <organization> nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "tiny_dnn/util/util.h"
#include "tiny_dnn/layers/layer.h"
namespace tiny_dnn {
template<typename Activation>
class partial_connected_layer : public feedforward_layer<Activation> {
public:
CNN_USE_LAYER_MEMBERS;
typedef std::vector<std::pair<serial_size_t, serial_size_t> > io_connections;
typedef std::vector<std::pair<serial_size_t, serial_size_t> > wi_connections;
typedef std::vector<std::pair<serial_size_t, serial_size_t> > wo_connections;
typedef feedforward_layer<Activation> Base;
partial_connected_layer(serial_size_t in_dim,
serial_size_t out_dim,
size_t weight_dim,
size_t bias_dim,
float_t scale_factor = float_t(1))
: Base(std_input_order(bias_dim > 0)),
weight2io_(weight_dim),
out2wi_(out_dim),
in2wo_(in_dim),
bias2out_(bias_dim),
out2bias_(out_dim),
scale_factor_(scale_factor){}
size_t param_size() const {
size_t total_param = 0;
for (auto w : weight2io_)
if (w.size() > 0) total_param++;
for (auto b : bias2out_)
if (b.size() > 0) total_param++;
return total_param;
}
serial_size_t fan_in_size() const override {
return max_size(out2wi_);
}
serial_size_t fan_out_size() const override {
return max_size(in2wo_);
}
void connect_weight(serial_size_t input_index, serial_size_t output_index, serial_size_t weight_index) {
weight2io_[weight_index].emplace_back(input_index, output_index);
out2wi_[output_index].emplace_back(weight_index, input_index);
in2wo_[input_index].emplace_back(weight_index, output_index);
}
void connect_bias(serial_size_t bias_index, serial_size_t output_index) {
out2bias_[output_index] = bias_index;
bias2out_[bias_index].push_back(output_index);
}
void forward_propagation(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
const tensor_t& in = *in_data[0];
const vec_t& W = (*in_data[1])[0];
const vec_t& b = (*in_data[2])[0];
tensor_t& a = *out_data[1];
// @todo revise the parallelism strategy
for (serial_size_t sample = 0, sample_count = static_cast<serial_size_t>(in.size()); sample < sample_count; ++sample) {
vec_t& a_sample = a[sample];
for_i(parallelize_, out2wi_.size(), [&](int i) {
const wi_connections& connections = out2wi_[i];
float_t& a_element = a_sample[i];
a_element = float_t(0);
for (auto connection : connections)// 13.1%
a_element += W[connection.first] * in[sample][connection.second]; // 3.2%
a_element *= scale_factor_;
a_element += b[out2bias_[i]];
});
}
this->forward_activation(*out_data[0], *out_data[1]);
}
void back_propagation(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
const tensor_t& prev_out = *in_data[0];
const vec_t& W = (*in_data[1])[0];
vec_t& dW = (*in_grad[1])[0];
vec_t& db = (*in_grad[2])[0];
tensor_t& prev_delta = *in_grad[0];
tensor_t& curr_delta = *out_grad[0];
this->backward_activation(*out_grad[0], *out_data[0], curr_delta);
// @todo revise the parallelism strategy
for (serial_size_t sample = 0, sample_count = static_cast<serial_size_t>(prev_out.size()); sample < sample_count; ++sample) {
for_(parallelize_, 0, in2wo_.size(), [&](const blocked_range& r) {
for (int i = r.begin(); i != r.end(); i++) {
const wo_connections& connections = in2wo_[i];
float_t delta = float_t(0);
for (auto connection : connections)
delta += W[connection.first] * curr_delta[sample][connection.second]; // 40.6%
prev_delta[sample][i] = delta * scale_factor_; // 2.1%
}
});
for_(parallelize_, 0, weight2io_.size(), [&](const blocked_range& r) {
for (int i = r.begin(); i < r.end(); i++) {
const io_connections& connections = weight2io_[i];
float_t diff = float_t(0);
for (auto connection : connections) // 11.9%
diff += prev_out[sample][connection.first] * curr_delta[sample][connection.second];
dW[i] += diff * scale_factor_;
}
});
for (size_t i = 0; i < bias2out_.size(); i++) {
const std::vector<serial_size_t>& outs = bias2out_[i];
float_t diff = float_t(0);
for (auto o : outs)
diff += curr_delta[sample][o];
db[i] += diff;
}
}
}
protected:
std::vector<io_connections> weight2io_; // weight_id -> [(in_id, out_id)]
std::vector<wi_connections> out2wi_; // out_id -> [(weight_id, in_id)]
std::vector<wo_connections> in2wo_; // in_id -> [(weight_id, out_id)]
std::vector<std::vector<serial_size_t> > bias2out_;
std::vector<size_t> out2bias_;
float_t scale_factor_;
};
} // namespace tiny_dnn
|