1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
/*
Copyright (c) 2016, Taiga Nomi
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the <organization> nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "tiny_dnn/util/util.h"
#include "tiny_dnn/layers/layer.h"
namespace tiny_dnn {
enum class slice_type {
slice_samples,
slice_channels
};
/**
* slice an input data into multiple outputs along a given slice dimension.
**/
class slice_layer : public layer {
public:
typedef layer Base;
/**
* @param in_shape [in] size (width * height * channels) of input data
* @param slice_type [in] target axis of slicing
* @param num_outputs [in] number of output layers
*
* example1:
* input: NxKxWxH = 4x3x2x2 (N:batch-size, K:channels, W:width, H:height)
* slice_type: slice_samples
* num_outputs: 3
*
* output[0]: 1x3x2x2
* output[1]: 1x3x2x2
* output[2]: 2x3x2x2 (mod data is assigned to the last output)
*
* example2:
* input: NxKxWxH = 4x6x2x2
* slice_type: slice_channels
* num_outputs: 3
*
* output[0]: 4x2x2x2
* output[1]: 4x2x2x2
* output[2]: 4x2x2x2
**/
slice_layer(const shape3d& in_shape, slice_type slice_type, serial_size_t num_outputs)
: layer(std::vector<vector_type>(1, vector_type::data), std::vector<vector_type>(num_outputs, vector_type::data)),
in_shape_(in_shape), slice_type_(slice_type), num_outputs_(num_outputs) {
set_shape();
}
slice_layer(const layer& prev_layer, slice_type slice_type, serial_size_t num_outputs)
: layer(std::vector<vector_type>(1, vector_type::data), std::vector<vector_type>(num_outputs, vector_type::data)),
in_shape_(prev_layer.out_shape()[0]), slice_type_(slice_type), num_outputs_(num_outputs) {
set_shape();
}
std::string layer_type() const override {
return "slice";
}
std::vector<shape3d> in_shape() const override {
return {in_shape_};
}
std::vector<shape3d> out_shape() const override {
return out_shapes_;
}
void forward_propagation(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
switch (slice_type_) {
case slice_type::slice_samples:
slice_data_forward(*in_data[0], out_data);
break;
case slice_type::slice_channels:
slice_channels_forward(*in_data[0], out_data);
break;
default:
throw nn_not_implemented_error();
}
}
void back_propagation(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
CNN_UNREFERENCED_PARAMETER(in_data);
CNN_UNREFERENCED_PARAMETER(out_data);
switch (slice_type_) {
case slice_type::slice_samples:
slice_data_backward(out_grad, *in_grad[0]);
break;
case slice_type::slice_channels:
slice_channels_backward(out_grad, *in_grad[0]);
break;
default:
throw nn_not_implemented_error();
}
}
template <class Archive>
static void load_and_construct(Archive & ar, cereal::construct<slice_layer> & construct) {
shape3d in_shape;
slice_type slice_type;
serial_size_t num_outputs;
ar(cereal::make_nvp("in_size", in_shape), cereal::make_nvp("slice_type", slice_type), cereal::make_nvp("num_outputs", num_outputs));
construct(in_shape, slice_type, num_outputs);
}
template <class Archive>
void serialize(Archive & ar) {
layer::serialize_prolog(ar);
ar(cereal::make_nvp("in_size", in_shape_), cereal::make_nvp("slice_type", slice_type_), cereal::make_nvp("num_outputs", num_outputs_));
}
private:
void slice_data_forward(const tensor_t& in_data,
std::vector<tensor_t*>& out_data) {
const vec_t* in = &in_data[0];
for (serial_size_t i = 0; i < num_outputs_; i++) {
tensor_t& out = *out_data[i];
std::copy(in, in + slice_size_[i], &out[0]);
in += slice_size_[i];
}
}
void slice_data_backward(std::vector<tensor_t*>& out_grad,
tensor_t& in_grad) {
vec_t* in = &in_grad[0];
for (serial_size_t i = 0; i < num_outputs_; i++) {
tensor_t& out = *out_grad[i];
std::copy(&out[0], &out[0] + slice_size_[i], in);
in += slice_size_[i];
}
}
void slice_channels_forward(const tensor_t& in_data,
std::vector<tensor_t*>& out_data) {
serial_size_t num_samples = static_cast<serial_size_t>(in_data.size());
serial_size_t channel_idx = 0;
serial_size_t spatial_dim = in_shape_.area();
for (serial_size_t i = 0; i < num_outputs_; i++) {
for (serial_size_t s = 0; s < num_samples; s++) {
float_t *out = &(*out_data[i])[s][0];
const float_t *in = &in_data[s][0] + channel_idx*spatial_dim;
std::copy(in, in + slice_size_[i] * spatial_dim, out);
}
channel_idx += slice_size_[i];
}
}
void slice_channels_backward(std::vector<tensor_t*>& out_grad,
tensor_t& in_grad) {
serial_size_t num_samples = static_cast<serial_size_t>(in_grad.size());
serial_size_t channel_idx = 0;
serial_size_t spatial_dim = in_shape_.area();
for (serial_size_t i = 0; i < num_outputs_; i++) {
for (serial_size_t s = 0; s < num_samples; s++) {
const float_t *out = &(*out_grad[i])[s][0];
float_t *in = &in_grad[s][0] + channel_idx*spatial_dim;
std::copy(out, out + slice_size_[i] * spatial_dim, in);
}
channel_idx += slice_size_[i];
}
}
void set_sample_count(serial_size_t sample_count) override {
if (slice_type_ == slice_type::slice_samples) {
if (num_outputs_ == 0)
throw nn_error("num_outputs must be positive integer");
serial_size_t sample_per_out = sample_count / num_outputs_;
slice_size_.resize(num_outputs_, sample_per_out);
slice_size_.back() = sample_count - (sample_per_out*(num_outputs_-1));
}
Base::set_sample_count(sample_count);
}
void set_shape() {
switch (slice_type_) {
case slice_type::slice_samples:
set_shape_data();
break;
case slice_type::slice_channels:
set_shape_channels();
break;
default:
throw nn_not_implemented_error();
}
}
void set_shape_data() {
out_shapes_.resize(num_outputs_, in_shape_);
}
void set_shape_channels() {
serial_size_t channel_per_out = in_shape_.depth_ / num_outputs_;
out_shapes_.clear();
for (serial_size_t i = 0; i < num_outputs_; i++) {
serial_size_t ch = channel_per_out;
if (i == num_outputs_ - 1) {
assert(in_shape_.depth_ >= i * channel_per_out);
ch = in_shape_.depth_ - i * channel_per_out;
}
slice_size_.push_back(ch);
out_shapes_.push_back(shape3d(in_shape_.width_, in_shape_.height_, ch));
}
}
shape3d in_shape_;
slice_type slice_type_;
serial_size_t num_outputs_;
std::vector<shape3d> out_shapes_;
std::vector<serial_size_t> slice_size_;
};
} // namespace tiny_dnn
|