File: network.h

package info (click to toggle)
tiny-dnn 1.0.0a3%2Bds-5
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 4,784 kB
  • sloc: cpp: 16,471; ansic: 11,829; lisp: 3,682; python: 3,422; makefile: 208
file content (1118 lines) | stat: -rw-r--r-- 40,094 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
/*
    Copyright (c) 2013, Taiga Nomi
    All rights reserved.

    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions are met:
    * Redistributions of source code must retain the above copyright
    notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
    notice, this list of conditions and the following disclaimer in the
    documentation and/or other materials provided with the distribution.
    * Neither the name of the <organization> nor the
    names of its contributors may be used to endorse or promote products
    derived from this software without specific prior written permission.

    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
    EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
    WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
    DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
    DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
    LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
    ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <iostream>
#include <stdexcept>
#include <algorithm>
#include <iterator>
#include <iomanip>
#include <map>
#include <set>
#include <limits>
#include <string>
#include <vector>

#include "tiny_dnn/nodes.h"
#include "tiny_dnn/util/util.h"
#include "tiny_dnn/lossfunctions/loss_function.h"
#include "tiny_dnn/activations/activation_function.h"

namespace tiny_dnn {

enum class content_type {
    weights,  ///< save/load the weights
    model,    ///< save/load the network architecture
    weights_and_model  ///< save/load both the weights and the architecture
};

enum class file_format {
    binary,
    json
};

struct result {
    result() : num_success(0), num_total(0) {}

    float_t accuracy() const {
        return float_t(num_success * 100.0 / num_total);
    }

    template <typename Char, typename CharTraits>
    void print_summary(std::basic_ostream<Char, CharTraits>& os) const {
      os << "accuracy:" << accuracy()
         << "% (" << num_success << "/"
         << num_total << ")" << std::endl;
    }

    template <typename Char, typename CharTraits>
    void print_detail(std::basic_ostream<Char, CharTraits>& os) const {
        print_summary(os);
        auto all_labels = labels();

        os << std::setw(5) << "*" << " ";
        for (auto c : all_labels)
            os << std::setw(5) << c << " ";
        os << std::endl;

        for (auto r : all_labels) {
            os << std::setw(5) << r << " ";
            const auto row_iter = confusion_matrix.find(r);
            for (auto c : all_labels) {
                int count = 0;
                if (row_iter != confusion_matrix.end()) {
                    const auto& row = row_iter->second;
                    const auto col_iter = row.find(c);
                    if (col_iter != row.end()) {
                        count = col_iter->second;
                    }
                }
                os << std::setw(5) << count << " ";
            }
            os << std::endl;
        }
    }

    std::set<label_t> labels() const {
        std::set<label_t> all_labels;
        for (auto r : confusion_matrix) {
            all_labels.insert(r.first);
            for (auto c : r.second)
                all_labels.insert(c.first);
        }
        return all_labels;
    }

    int num_success;
    int num_total;
    std::map<label_t, std::map<label_t, int> > confusion_matrix;
};

enum grad_check_mode {
    GRAD_CHECK_ALL,    ///< check all elements of weights
    GRAD_CHECK_RANDOM  ///< check 10 randomly selected weights
};

template <typename NetType>
class network;

template <typename Layer>
network<sequential>& operator << (network<sequential>& n, Layer&& l);

void construct_graph(network<graph>& graph,
                     const std::vector<std::shared_ptr<layer>>& inputs,
                     const std::vector<std::shared_ptr<layer>>& outputs);
void construct_graph(network<graph>& graph,
                     const std::vector<layer*>& inputs,
                     const std::vector<layer*>& outputs);
/**
 * A model of neural networks in tiny-dnn
 *
 * There are two types of network model available: sequential and graph.
 * A graph representation describe network as computational graph -
 * each node of graph is layer, and each directed edge holds tensor and
 * its gradients. Sequential representation describe network as linked list -
 * each layer has at most one predecessor and one successor layer.
 *
 * Two types of network is represented as network<sequential> and network<graph> class.
 * These two classes have same API, except for its construction.
 *
 *     using namespace tiny_dnn;
 *     using namespace tiny_dnn::layers;
 *
 *     std::vector<vec_t> data;
 *     std::vector<label_t> label;
 *
 *     network<sequential> net("foo");
 *     std::cout << net.name(); // "foo"
 *
 *     // simply stack layers by operator <<
 *     net << fc<tan_h>(50, 200) << fc<tan_h>(200, 10);
 *
 *     // prepare optimizer
 *     adagrad opt;
 *
 *     // then train
 *     net.train<mse>(opt, data, label, 10, 20);
 *
 *
 * @param NetType specify the network is "sequential" or "graph".
 *                "sequential" means the network doesn't have any branch or merge pass.
 *                if the network has branch/merge, "graph" can be used.
 **/
template<typename NetType>
class network {
 public:
    typedef typename std::vector<layerptr_t>::iterator iterator;
    typedef typename std::vector<layerptr_t>::const_iterator const_iterator;

    explicit network(const std::string& name = "") : name_(name) {}

    /**
     * name of the network
     **/
    std::string  name() const           { return name_; }

    /**
     * explicitly initialize weights of all layers
     **/
    void         init_weight()          { net_.setup(true); }

    /**
     * executes forward-propagation and returns output
     **/
    vec_t        predict(const vec_t& in) { return fprop(in); }

    /**
     * executes forward-propagation and returns output
     **/
    tensor_t predict(const tensor_t& in) { return fprop(in); }

    /**
    * executes forward-propagation and returns output
    **/
    std::vector<tensor_t> predict(const std::vector<tensor_t>& in) { return fprop(in); }

    /**
     * executes forward-propagation and returns maximum output
     **/
    float_t      predict_max_value(const vec_t& in) {
        return fprop_max(in);
    }

    /**
     * executes forward-propagation and returns maximum output index
     **/
    label_t      predict_label(const vec_t& in) {
        return fprop_max_index(in);
    }

    /**
     * executes forward-propagation and returns output
     *
     * @param in input value range(double[], std::vector<double>, std::list<double> etc)
     **/
    template <typename Range>
    vec_t        predict(const Range& in) {
        using std::begin;  // for ADL
        using std::end;
        return predict(vec_t(begin(in), end(in)));
    }


    /**
     * trains the network for a fixed number of epochs (for classification task)
     *
     * The difference between train and fit method is how to specify desired output.
     * This method takes label_t argument and convert to target vector automatically.
     * To train correctly, output dimension of last layer must be greater or equal to
     * number of label-ids.
     *
     * @param optimizer          optimizing algorithm for training
     * @param inputs             array of input data
     * @param class_labels       array of label-id for each input data(0-origin)
     * @param batch_size         number of samples per parameter update
     * @param epoch              number of training epochs
     * @param on_batch_enumerate callback for each mini-batch enumerate
     * @param on_epoch_enumerate callback for each epoch
     * @param reset_weights      set true if reset current network weights
     * @param n_threads          number of tasks
     * @param t_cost             target costs (leave to nullptr in order to assume equal cost for every target)
     */
    template <typename Error, typename Optimizer,
              typename OnBatchEnumerate, typename OnEpochEnumerate>
    bool train(Optimizer&                  optimizer,
               const std::vector<vec_t>&   inputs,
               const std::vector<label_t>& class_labels,
               size_t                      batch_size,
               int                         epoch,
               OnBatchEnumerate            on_batch_enumerate,
               OnEpochEnumerate            on_epoch_enumerate,
               const bool                  reset_weights = false,
               const int                   n_threads = CNN_TASK_SIZE,
               const std::vector<vec_t>&   t_cost = std::vector<vec_t>()) {
        std::vector<tensor_t> input_tensor, output_tensor, t_cost_tensor;
        normalize_tensor(inputs, input_tensor);
        normalize_tensor(class_labels, output_tensor);
        if (!t_cost.empty()) normalize_tensor(t_cost, t_cost_tensor);

        return fit<Error>(optimizer, input_tensor, output_tensor, batch_size,
                          epoch, on_batch_enumerate, on_epoch_enumerate,
                          reset_weights, n_threads, t_cost_tensor);
    }

    /**
    * trains the network for a fixed number of epochs to generate desired output.
    *
    * This method execute fixed number of training steps and invoke callbacks for each mini-batch/epochs.
    * The network is trained to minimize given loss function(specified by template parameter).
    *
    * Shape of inputs and desired_outputs must be same to network inputs. For example, if your network
    * has 2 input layers that takes N dimensional array, for each element of inputs must be [2xN]
    * array.
    *
    * @code
    * network<sequential> net;
    * adagrad opt;
    *
    * net << layers::fc<tan_h>(2,3) << layers::fc<relu>(3,1);
    *
    * // 2training data, each data is float_t[2]
    * std::vector<vec_t> data { { 1, 0 }, { 0, 2 } };
    * std::vector<vec_t> out  {    { 2 },    { 1 } };
    *
    * net.fit<mse>(opt, data, out, 1, 1);
    *
    * // 2training data, each data is float_t[1][2]
    * // this form is also valid
    * std::vector<tensor_t> data2{ { { 1, 0 } }, { { 0, 2 } } };
    * std::vector<tensor_t> out2 { {    { 2 } }, {    { 1 } } };
    *
    * net.fit<mse>(opt, data2, out2, 1, 1);
    * @endcode
    *
    *
    * @param optimizer          optimizing algorithm for training
    * @param inputs             array of input data
    * @param desired_outputs    array of desired output
    * @param batch_size         number of samples per parameter update
    * @param epoch              number of training epochs
    * @param on_batch_enumerate callback for each mini-batch enumerate
    * @param on_epoch_enumerate callback for each epoch
    * @param reset_weights      set true if reset current network weights
    * @param n_threads          number of tasks
    * @param t_cost             target costs (leave to nullptr in order to assume equal cost for every target)
    */
    template <typename Error, typename Optimizer,
              typename OnBatchEnumerate, typename OnEpochEnumerate,
              typename T, typename U>
    bool fit(Optimizer&            optimizer,
             const std::vector<T>& inputs,
             const std::vector<U>& desired_outputs,
             size_t                batch_size,
             int                   epoch,
             OnBatchEnumerate      on_batch_enumerate,
             OnEpochEnumerate      on_epoch_enumerate,
             const bool            reset_weights = false,
             const int             n_threads = CNN_TASK_SIZE,
             const std::vector<U>& t_cost = std::vector<U>()) {
        std::vector<tensor_t> input_tensor, output_tensor, t_cost_tensor;
        normalize_tensor(inputs, input_tensor);
        normalize_tensor(desired_outputs, output_tensor);
        if (!t_cost.empty()) normalize_tensor(t_cost, t_cost_tensor);

        return fit<Error>(optimizer, input_tensor, output_tensor, batch_size,
                          epoch, on_batch_enumerate, on_epoch_enumerate,
                          reset_weights, n_threads, t_cost_tensor);
    }

    /**
     * @param optimizer          optimizing algorithm for training
     * @param inputs             array of input data
     * @param desired_outputs    array of desired output
     * @param batch_size         number of samples per parameter update
     * @param epoch              number of training epochs
     **/
    template<typename Error, typename Optimizer, typename T, typename U>
    bool fit(Optimizer&            optimizer,
             const std::vector<T>& inputs,
             const std::vector<U>& desired_outputs,
             size_t                batch_size = 1,
             int                   epoch = 1) {
        return fit<Error>(optimizer, inputs, desired_outputs,
                          batch_size, epoch, nop, nop);
    }

    /**
     * @param optimizer          optimizing algorithm for training
     * @param inputs             array of input data
     * @param class_labels       array of label-id for each input data(0-origin)
     * @param batch_size         number of samples per parameter update
     * @param epoch              number of training epochs
     **/
    template<typename Error, typename Optimizer>
    bool train(Optimizer&                  optimizer,
               const std::vector<vec_t>&   inputs,
               const std::vector<label_t>& class_labels,
               size_t                      batch_size = 1,
               int                         epoch = 1) {
        return train<Error>(optimizer, inputs, class_labels,
                            batch_size, epoch, nop, nop);
    }

    /**
     * @deprecated use fit instead for regression task
     **/
    template<typename Error, typename Optimizer>
    bool train(Optimizer&                optimizer,
               const std::vector<vec_t>& in,
               const std::vector<vec_t>& t,
               size_t                    batch_size = 1,
               int                       epoch = 1) {
        return fit<Error>(optimizer, in, t, batch_size, epoch, nop, nop);
    }

    /**
     * set the netphase to train or test
     * @param phase phase of network, could be train or test
     */
    void set_netphase(net_phase phase) {
        for (auto n : net_) {
            n->set_context(phase);
        }
    }

    /**
     * test and generate confusion-matrix for classification task
     **/
    result test(const std::vector<vec_t>& in, const std::vector<label_t>& t) {
        result test_result;
        set_netphase(net_phase::test);
        for (size_t i = 0; i < in.size(); i++) {
            const label_t predicted = fprop_max_index(in[i]);
            const label_t actual = t[i];

            if (predicted == actual) test_result.num_success++;
            test_result.num_total++;
            test_result.confusion_matrix[predicted][actual]++;
        }
        return test_result;
    }

    /**
     * generate output for each input
     **/
    std::vector<vec_t> test(const std::vector<vec_t>& in) {
        std::vector<vec_t> test_result(in.size());
        set_netphase(net_phase::test);
        for (size_t i = 0; i < in.size(); i++) {
            test_result[i] = predict(in[i]);
        }
        return test_result;
    }

    /**
     * calculate loss value (the smaller, the better) for regression task
     **/
    template <typename E>
    float_t get_loss(const std::vector<vec_t>& in,
                     const std::vector<vec_t>& t) {
        float_t sum_loss = float_t(0);

        for (size_t i = 0; i < in.size(); i++) {
            const vec_t predicted = predict(in[i]);
            sum_loss += E::f(predicted, t[i]);
        }
        return sum_loss;
    }

    /**
     * calculate loss value (the smaller, the better) for regression task
     **/
    template <typename E, typename T>
    float_t get_loss(const std::vector<T>& in, const std::vector<tensor_t>& t) {
        float_t sum_loss = float_t(0);
        std::vector<tensor_t> in_tensor;
        normalize_tensor(in, in_tensor);

        for (size_t i = 0; i < in.size(); i++) {
            const tensor_t predicted = predict(in_tensor[i]);
            for (size_t j = 0; j < predicted.size(); j++) {
                sum_loss += E::f(predicted[j], t[i][j]);
            }
        }
        return sum_loss;
    }

    /**
    * checking gradients calculated by bprop
    * detail information:
    * http://ufldl.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization
    **/
    template <typename E>
    bool gradient_check(const std::vector<tensor_t>& in,
                        const std::vector<std::vector<label_t>>& t,
                        float_t eps, grad_check_mode mode) {
        assert(in.size() == t.size());

        std::vector<tensor_t> v(t.size());
        const serial_size_t sample_count = static_cast<serial_size_t>(t.size());
        for (serial_size_t sample = 0; sample < sample_count; ++sample) {
            net_.label2vec(&t[sample][0], static_cast<serial_size_t>(t[sample].size()), &v[sample]);
        }

        for (auto current : net_) {  // ignore first input layer
            if (current->weights().size() < 2) {
                continue;
            }
            vec_t& w = *current->weights()[0];
            vec_t& b = *current->weights()[1];
            tensor_t& dw = (*current->weights_grads()[0]);
            tensor_t& db = (*current->weights_grads()[1]);

            if (w.empty()) continue;

            switch (mode) {
            case GRAD_CHECK_ALL:
                for (int i = 0; i < static_cast<int>(w.size()); i++)
                    if (!calc_delta<E>(in, v, w, dw, i, eps)) {
                        return false;
                    }
                for (int i = 0; i < static_cast<int>(b.size()); i++)
                    if (!calc_delta<E>(in, v, b, db, i, eps)) {
                        return false;
                    }
                break;
            case GRAD_CHECK_RANDOM:
                for (int i = 0; i < 10; i++)
                    if (!calc_delta<E>(in, v, w, dw, uniform_idx(w), eps)) {
                        return false;
                    }
                for (int i = 0; i < 10; i++)
                    if (!calc_delta<E>(in, v, b, db, uniform_idx(b), eps)) {
                        return false;
                    }
                break;
            default:
                throw nn_error("unknown grad-check type");
            }
        }
        return true;
    }

    /**
     * return number of layers
     **/
    size_t layer_size() const {
        return net_.size();
    }

    /**
     * @deprecated use layer_size() instread.
     **/
    size_t depth() const {
        return layer_size();
    }

    /**
     * return raw pointer of index-th layer
     **/
    const layer* operator[] (size_t index) const {
        return net_[index];
    }

    /**
     * return raw pointer of index-th layer
     **/
    layer* operator[] (size_t index) {
        return net_[index];
    }

    /**
     * return index-th layer as <T>
     * throw nn_error if index-th layer cannot be converted to T
     **/
    template <typename T>
    const T& at(size_t index) const {
        return net_.template at<T>(index);
    }

    template <typename T>
    T& at(size_t index) {
        return net_.template at<T>(index);
    }

    /**
     * return total number of elements of output data
     **/
    serial_size_t out_data_size() const {
        return net_.out_data_size();
    }

    /**
     * return total number of elements of input data
     */
    serial_size_t in_data_size() const {
        return net_.in_data_size();
    }

    /**
    * set weight initializer to all layers
    **/
    template <typename WeightInit>
    network& weight_init(const WeightInit& f) {
        auto ptr = std::make_shared<WeightInit>(f);
        for (auto& l : net_)
            l->weight_init(ptr);
        return *this;
    }

    /**
    * set bias initializer to all layers
    **/
    template <typename BiasInit>
    network& bias_init(const BiasInit& f) {
        auto ptr = std::make_shared<BiasInit>(f);
        for (auto& l : net_)
            l->bias_init(ptr);
        return *this;
    }

    /**
     * returns if 2 networks have almost(<eps) the same weights
     **/
    template <typename T>
    bool has_same_weights(const network<T>& rhs, float_t eps) const {
        auto first1 = net_.begin();
        auto first2 = rhs.net_.begin();
        auto last1 = net_.end();
        auto last2 = rhs.net_.end();

        for (; first1 != last1 && first2 != last2; ++first1, ++first2)
            if (!(*first1)->has_same_weights(**first2, eps)) return false;
        return true;
    }

    iterator begin() { return net_.begin(); }
    iterator end() { return net_.end(); }
    const_iterator begin() const { return net_.begin(); }
    const_iterator end() const { return net_.end(); }

    void load(const std::string& filename,
              content_type       what     = content_type::weights_and_model,
              file_format        format   = file_format::binary) {
        std::ifstream ifs(filename.c_str(), std::ios::binary | std::ios::in);
        if (ifs.fail() || ifs.bad())
            throw nn_error("failed to open:" + filename);

        switch (format) {
            case file_format::binary:
            {
                cereal::BinaryInputArchive bi(ifs);
                from_archive(bi, what);
            }
            break;
            case file_format::json:
            {
                cereal::JSONInputArchive ji(ifs);
                from_archive(ji, what);
            }
            break;
            default:
                throw nn_error("invalid serialization format");
        }
    }

    void save(const std::string& filename,
              content_type       what     = content_type::weights_and_model,
              file_format        format   = file_format::binary) const {
        std::ofstream ofs(filename.c_str(), std::ios::binary | std::ios::out);
        if (ofs.fail() || ofs.bad())
            throw nn_error("failed to open:" + filename);

        switch (format) {
            case file_format::binary:
            {
                cereal::BinaryOutputArchive bo(ofs);
                to_archive(bo, what);
            }
            break;
            case file_format::json:
            {
                cereal::JSONOutputArchive jo(ofs);
                to_archive(jo, what);
            }
            break;
            default:
                throw nn_error("invalid serialization format");
        }
    }

    /**
     * save the network architecture as json string
     **/
    std::string to_json() const {
        std::stringstream ss;
        {
            cereal::JSONOutputArchive oa(ss);
            to_archive(oa, content_type::model);
        }
        return ss.str();
    }

    /**
     * load the network architecture from json string
     **/
    void from_json(const std::string& json_string) {
        std::stringstream ss;
        ss << json_string;
        cereal::JSONInputArchive ia(ss);
        from_archive(ia, content_type::model);
    }

    ///< @deprecated use save(filename,target,format) instead.
    void save(std::ostream& os) const {
        os.precision(std::numeric_limits<tiny_dnn::float_t>::digits10);
        net_.save(os);
    }

    ///< @deprecated use load(filename,target,format) instead.
    void load(std::istream& is) {
        is.precision(std::numeric_limits<tiny_dnn::float_t>::digits10);
        net_.load(is);
    }

    /**
    * load network weights from filepath, 30 times faster than stream reading
    * @deprecated use load_weights instead.
    **/
    void fast_load(const char* filepath) {
        FILE* stream = fopen(filepath, "r");
        std::vector<float_t> data;
        double temp;
        while (fscanf(stream, "%lf", &temp) > 0)
            data.push_back(float_t(temp));
        fclose(stream);

        net_.load(data);
    }

    template <typename OutputArchive>
    void to_archive(OutputArchive& ar,
                    content_type what = content_type::weights_and_model) const {
        if (what == content_type::model ||
            what == content_type::weights_and_model) {
            net_.save_model(ar);
        }
        if (what == content_type::weights ||
            what == content_type::weights_and_model) {
            net_.save_weights(ar);
        }
    }

    template <typename InputArchive>
    void from_archive(InputArchive& ar,
                      content_type what = content_type::weights_and_model) {
        if (what == content_type::model ||
            what == content_type::weights_and_model) {
            net_.load_model(ar);
        }
        if (what == content_type::weights ||
            what == content_type::weights_and_model) {
            net_.load_weights(ar);
        }
    }

 protected:
    float_t fprop_max(const vec_t& in, int idx = 0) {
        const vec_t& prediction = fprop(in, idx);
        return *std::max_element(std::begin(prediction), std::end(prediction));
    }

    label_t fprop_max_index(const vec_t& in) {
        return label_t(max_index(fprop(in)));
    }

 private:
    template <typename Layer>
    friend network<sequential>& operator << (network<sequential>& n, Layer&& l);

    friend void construct_graph(network<graph>& graph,
        const std::vector<std::shared_ptr<layer>>& inputs,
        const std::vector<std::shared_ptr<layer>>& outputs);

    friend void construct_graph(network<graph>& graph,
        const std::vector<layer*>& inputs,
        const std::vector<layer*>& outputs);

    template <typename Error, typename Optimizer,
              typename OnBatchEnumerate, typename OnEpochEnumerate>
    bool fit(Optimizer&                   optimizer,
        const std::vector<tensor_t>& inputs,
        const std::vector<tensor_t>& desired_outputs,
        size_t                       batch_size,
        int                          epoch,
        OnBatchEnumerate             on_batch_enumerate,
        OnEpochEnumerate             on_epoch_enumerate,
        const bool                   reset_weights = false,
        const int                    n_threads = CNN_TASK_SIZE,
        const std::vector<tensor_t>& t_cost = std::vector<tensor_t>()) {
        // check_training_data(in, t);
        check_target_cost_matrix(desired_outputs, t_cost);
        set_netphase(net_phase::train);
        net_.setup(reset_weights);

        for (auto n : net_)
            n->set_parallelize(true);
        optimizer.reset();
        for (int iter = 0; iter < epoch; iter++) {
            for (size_t i = 0; i < inputs.size(); i += batch_size) {
                train_once<Error>(optimizer, &inputs[i], &desired_outputs[i],
                    static_cast<int>(std::min(batch_size, inputs.size() - i)),
                    n_threads,
                    get_target_cost_sample_pointer(t_cost, i));
                on_batch_enumerate();

                /* if (i % 100 == 0 && layers_.is_exploded()) {
                  std::cout << "[Warning]Detected infinite value in weight. stop learning." << std::endl;
                    return false;
                } */
            }
            on_epoch_enumerate();
        }
        set_netphase(net_phase::test);
        return true;
    }

    /**
     * train on one minibatch
     *
     * @param size is the number of data points to use in this batch
     */
    template <typename E, typename Optimizer>
    void train_once(Optimizer& optimizer,
                    const tensor_t* in,
                    const tensor_t* t,
                    int size,
                    const int nbThreads,
                    const tensor_t* t_cost) {
        if (size == 1) {
            bprop<E>(fprop(in[0]), t[0], t_cost ? t_cost[0] : tensor_t());
            net_.update_weights(&optimizer, 1);
        } else {
            train_onebatch<E>(optimizer, in, t, size, nbThreads, t_cost);
        }
    }

    /**
     * trains on one minibatch, i.e. runs forward and backward propagation to calculate
     * the gradient of the loss function with respect to the network parameters (weights),
     * then calls the optimizer algorithm to update the weights
     *
     * @param batch_size the number of data points to use in this batch
     */
    template <typename E, typename Optimizer>
    void train_onebatch(Optimizer&      optimizer,
                        const tensor_t* in,
                        const tensor_t* t,
                        int             batch_size,
                        const int       num_tasks,
                        const tensor_t* t_cost) {
        std::vector<tensor_t> in_batch(&in[0], &in[0] + batch_size);
        std::vector<tensor_t> t_batch(&t[0], &t[0] + batch_size);
        std::vector<tensor_t> t_cost_batch = t_cost
            ? std::vector<tensor_t>(&t_cost[0], &t_cost[0] + batch_size)
            : std::vector<tensor_t>();

        bprop<E>(fprop(in_batch), t_batch, t_cost_batch);
        net_.update_weights(&optimizer, batch_size);
    }

    vec_t fprop(const vec_t& in) {
        if (in.size() != (size_t)in_data_size())
            data_mismatch(**net_.begin(), in);
#if 0
        return fprop(std::vector<vec_t>{ in })[0];
#else
        // a workaround to reduce memory consumption by skipping wrapper function
        std::vector<tensor_t> a(1);
        a[0].emplace_back(in);
        return fprop(a)[0][0];
#endif
    }

    // convenience wrapper for the function below
    std::vector<vec_t> fprop(const std::vector<vec_t>& in) {
        return fprop(std::vector<tensor_t>{ in })[0];
    }

    std::vector<tensor_t> fprop(const std::vector<tensor_t>& in) {
        return net_.forward(in);
    }

//    template <typename E>
//    float_t get_loss(const vec_t& out, const vec_t& t) {
//        assert(out.size() == t.size());
//        return E::f(out, t);
//    }

    template <typename E>
    bool calc_delta(const std::vector<tensor_t>& in,
                    const std::vector<tensor_t>& v,
                    vec_t& w, tensor_t& dw, int check_index, double eps) {
        static const float_t delta = std::sqrt(
            std::numeric_limits<float_t>::epsilon());

        assert(in.size() == v.size());

        const serial_size_t sample_count = static_cast<serial_size_t>(in.size());

        assert(sample_count > 0);

        // at the moment, channel count must be 1
        assert(in[0].size() == 1);
        assert(v[0].size() == 1);

        // clear previous results, if any
        for (vec_t& dw_sample : dw) {
            std::fill(dw_sample.begin(), dw_sample.end(), float_t(0));
        }

        // calculate dw/dE by numeric
        float_t prev_w = w[check_index];

        float_t f_p = float_t(0);
        w[check_index] = prev_w + delta;
        for (serial_size_t i = 0; i < sample_count; i++) {
            f_p += get_loss<E>(in[i], v[i]);
        }

        float_t f_m = float_t(0);
        w[check_index] = prev_w - delta;
        for (serial_size_t i = 0; i < sample_count; i++) {
            f_m += get_loss<E>(in[i], v[i]);
        }

        float_t delta_by_numerical = (f_p - f_m) / (float_t(2) * delta);
        w[check_index] = prev_w;

        // calculate dw/dE by bprop
        bprop<E>(fprop(in), v, std::vector<tensor_t>());

        float_t delta_by_bprop = 0;
        for (serial_size_t sample = 0; sample < sample_count; ++sample) {
            delta_by_bprop += dw[sample][check_index];
        }
        net_.clear_grads();

        return std::abs(delta_by_bprop - delta_by_numerical) <= eps;
    }

    // convenience wrapper for the function below
    template <typename E>
    void bprop(const std::vector<vec_t>& out,
               const std::vector<vec_t>& t, const std::vector<vec_t>& t_cost) {
        bprop<E>(std::vector<tensor_t>{out},
                 std::vector<tensor_t>{t}, std::vector<tensor_t>{t_cost});
    }

    template <typename E>
    void bprop(const std::vector<tensor_t>& out,
               const std::vector<tensor_t>& t,
               const std::vector<tensor_t>& t_cost) {
        std::vector<tensor_t> delta = gradient<E>(out, t, t_cost);
        net_.backward(delta);
    }

    void check_t(size_t i, label_t t, serial_size_t dim_out) {
        if (t >= dim_out) {
            std::ostringstream os;
            os << format_str("t[%u]=%u, dim(net output)=%u\n", i, t, dim_out);
            os << "in classification task, dim(net output) ";
            os << "must be greater than max class id.\n";
            if (dim_out == 1) {
                os << "\n(for regression, use vector<vec_t> ";
                os << "instead of vector<label_t> for training signal)\n";
            }

            throw nn_error("output dimension mismatch!\n " + os.str());
        }
    }

    void check_t(size_t i, const vec_t& t, serial_size_t dim_out) {
        if (t.size() != dim_out) {
            throw nn_error(format_str(
                "output dimension mismatch!\n dim(target[%u])=%u, "
                "dim(network output size=%u", i, t.size(), dim_out));
        }
    }

    template <typename T>
    void check_training_data(const std::vector<vec_t>& in,
                             const std::vector<T>& t) {
        serial_size_t dim_in = in_data_size();
        serial_size_t dim_out = out_data_size();

        if (in.size() != t.size()) {
            throw nn_error("size of training data must be equal to label data");
        }

        size_t num = in.size();

        for (size_t i = 0; i < num; i++) {
            if (in[i].size() != dim_in) {
                throw nn_error(format_str(
                    "input dimension mismatch!\n dim(data[%u])=%d, "
                    "dim(network input)=%u", i, in[i].size(), dim_in));
            }
            check_t(i, t[i], dim_out);
        }
    }

    void check_target_cost_matrix(const std::vector<tensor_t>& t,
                                  const std::vector<tensor_t>& t_cost) {
        if (!t_cost.empty()) {
            if (t.size() != t_cost.size()) {
                throw nn_error("if target cost is supplied, "
                               "its length must equal that of target data");
            }

            for (size_t i = 0, end = t.size(); i < end; i++) {
                check_target_cost_element(t[i], t_cost[i]);
            }
        }
    }

    // regression
    void check_target_cost_element(const vec_t& t, const vec_t& t_cost) {
        if (t.size() != t_cost.size()) {
            throw nn_error("if target cost is supplied for a regression task, "
                           "its shape must be identical to the target data");
        }
    }
    void check_target_cost_element(const tensor_t& t, const tensor_t& t_cost) {
        if (t.size() != t_cost.size()) {
            throw nn_error("if target cost is supplied for a regression task, "
                           "its shape must be identical to the target data");
        }
        for (size_t i = 0; i < t.size(); i++)
            check_target_cost_element(t[i], t_cost[i]);
    }

    const tensor_t* get_target_cost_sample_pointer(
        const std::vector<tensor_t>& t_cost, size_t i) {
        if (!t_cost.empty()) {
            assert(i < t_cost.size());
            return &(t_cost[i]);
        } else {
            return nullptr;
        }
    }

    void normalize_tensor(const std::vector<tensor_t>& inputs,
                          std::vector<tensor_t>& normalized) {
        normalized = inputs;
    }

    void normalize_tensor(const std::vector<vec_t>& inputs,
                          std::vector<tensor_t>& normalized) {
        normalized.reserve(inputs.size());
        for (size_t i = 0; i < inputs.size(); i++)
            normalized.emplace_back(tensor_t{ inputs[i] });
    }

    void normalize_tensor(const std::vector<label_t>& inputs,
                          std::vector<tensor_t>& normalized) {
        std::vector<vec_t> vec;
        normalized.reserve(inputs.size());
        net_.label2vec(&inputs[0], static_cast<serial_size_t>(inputs.size()), &vec);
        normalize_tensor(vec, normalized);
    }

    std::string name_;
    NetType net_;
};

/**
 * @brief [cut an image in samples to be tested (slow)]
 * @details [long description]
 *
 * @param data [pointer to the data]
 * @param rows [self explained]
 * @param cols [self explained]
 * @param sizepatch [size of the patch, such as the total number of pixel in the patch is sizepatch*sizepatch ]
 * @return [vector of vec_c (sample) to be passed to test function]
 */
inline std::vector<vec_t> image2vec(const float_t* data,
                                    const unsigned int  rows,
                                    const unsigned int cols,
                                    const unsigned int sizepatch,
                                    const unsigned int step = 1) {
    assert(step > 0);
    std::vector<vec_t> res((cols-sizepatch) * (rows-sizepatch) / (step*step),
                           vec_t(sizepatch*sizepatch));
        for_i((cols-sizepatch)*(rows-sizepatch)/(step*step), [&](int count) {
            const int j = step*(count / ((cols-sizepatch)/step));
            const int i = step*(count % ((cols-sizepatch)/step));

            // vec_t sample(sizepatch*sizepatch);

            if (i+sizepatch < cols && j+sizepatch < rows) {
                for (unsigned int k = 0; k < sizepatch*sizepatch; k++) {
                // for_i(sizepatch*sizepatch, [&](int k) {
                    unsigned int y = k / sizepatch + j;
                    unsigned int x = k % sizepatch + i;
                    res[count][k] = data[x+y*cols];
                }
                //});
                // res[count] = (sample);
            }
        });
    return res;
}

template <typename Layer>
network<sequential>& operator << (network<sequential>& n, Layer&& l) {
    n.net_.add(std::forward<Layer>(l));
    return n;
}

template <typename NetType, typename Char, typename CharTraits>
std::basic_ostream<Char, CharTraits>& operator << (std::basic_ostream<Char,
                                                   CharTraits>& os,
                                                   const network<NetType>& n) {
    n.save(os);
    return os;
}

template <typename NetType, typename Char, typename CharTraits>
std::basic_istream<Char, CharTraits>& operator >> (std::basic_istream<Char,
                                                   CharTraits>& os,
                                                   network<NetType>& n) {
    n.load(os);
    return os;
}

inline void construct_graph(network<graph>& graph,
                            const std::vector<layer*>& inputs,
                            const std::vector<layer*>& outputs) {
    graph.net_.construct(inputs, outputs);
}

inline void construct_graph(network<graph>& graph,
    const std::vector<std::shared_ptr<layer>>& inputs,
    const std::vector<std::shared_ptr<layer>>& outputs) {
    std::vector<layer*> in_ptr, out_ptr;
    auto shared2ptr = [](std::shared_ptr<layer> l) { return l.get(); };

    std::transform(inputs.begin(), inputs.end(),
                   std::back_inserter(in_ptr), shared2ptr);
    std::transform(outputs.begin(), outputs.end(),
                   std::back_inserter(out_ptr), shared2ptr);

    graph.net_.construct(in_ptr, out_ptr);
}
}  // namespace tiny_dnn