1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
|
/*
Copyright (c) 2016, Taiga Nomi
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the <organization> nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <vector>
#include <tuple>
#include <unordered_map>
#include <cereal/types/utility.hpp>
#include <cereal/types/tuple.hpp>
#include "tiny_dnn/util/util.h"
#include "tiny_dnn/layers/layer.h"
#include "tiny_dnn/optimizers/optimizer.h"
namespace cereal {
template <typename Archive>
void save(Archive & ar, const std::vector<tiny_dnn::layerptr_t>& v) {
ar(cereal::make_size_tag((cereal::size_type)v.size()));
for (auto n : v) {
tiny_dnn::layer::save_layer(ar, *n);
}
}
template <typename Archive>
void load(Archive & ar, std::vector<std::shared_ptr<tiny_dnn::layer>>& v) {
cereal::size_type size;
ar(cereal::make_size_tag(size));
for (size_t i = 0; i < size; i++) {
v.emplace_back(tiny_dnn::layer::load_layer(ar));
}
}
}
namespace tiny_dnn {
/** basic class of various network types (sequential, multi-in/multi-out).
*
* this class holds list of pointer of Node, and provides entry point of
* forward / backward operations.
* Node is a computational unit of tiny-dnn (for example, convolution).
* Currently 2 kinds of implementation are available: sequential and graph.
*
* Nodes can accept lvalue, rvalue and shared_ptr forms of node.
* If given type is rvalue or shared_ptr, nodes create shared_ptr<node> to keep
* given node alive. If given type is lvalue, tiny-dnn holds raw-pointer only
* (to avoid double-free).
*
* sequential s;
* s.add(fc<tan_h>(100, 200)); // rvalue, moved into nodes
*
* s.add(std::make_shared<fc<tan_h>>(200, 100)); // shared_ptr, shared by nodes
*
* fc<softmax> out(100, 10);
* s.add(out); // lvalue, hold raw-pointer only
*
**/
class nodes {
public:
typedef std::vector<layerptr_t>::iterator iterator;
typedef std::vector<layerptr_t>::const_iterator const_iterator;
/**
* propagate gradient
* @param first : gradient of cost function(dE/dy)
* @param worker_index : id of worker-task
**/
virtual
void backward(const std::vector<tensor_t>& first) = 0;
/**
* @param first input : data vectors
* @param worker_index : id of worker-task
**/
virtual
std::vector<tensor_t> forward(const std::vector<tensor_t>& first) = 0; // NOLINT
/**
* update weights and clear all gradients
**/
virtual
void update_weights(optimizer *opt, int batch_size) {
for (auto l : nodes_) {
l->update_weight(opt, batch_size);
}
}
/**
* setup all weights, must be called before forward/backward
**/
virtual void setup(bool reset_weight) {
for (auto l : nodes_) {
l->setup(reset_weight);
}
}
void clear_grads() {
for (auto l : nodes_) {
l->clear_grads();
}
}
size_t size() const { return nodes_.size(); }
iterator begin() { return nodes_.begin(); }
iterator end() { return nodes_.end(); }
const_iterator begin() const { return nodes_.begin(); }
const_iterator end() const { return nodes_.end(); }
layer* operator[] (size_t index) { return nodes_[index]; }
const layer* operator[] (size_t index) const { return nodes_[index]; }
serial_size_t in_data_size() const { return nodes_.front()->in_data_size(); }
serial_size_t out_data_size() const { return nodes_.back()->out_data_size(); }
template <typename T>
const T& at(size_t index) const {
const T* v = dynamic_cast<const T*>(nodes_[index]);
if (v) return *v;
throw nn_error("failed to cast");
}
template <typename T>
T& at(size_t index) {
T* v = dynamic_cast<T*>(nodes_[index]);
if (v) return *v;
throw nn_error("failed to cast");
}
// @todo: multiple output
virtual float_t target_value_min(int out_channel = 0) const {
CNN_UNREFERENCED_PARAMETER(out_channel);
return nodes_.back()->out_value_range().first;
}
virtual float_t target_value_max(int out_channel = 0) const {
CNN_UNREFERENCED_PARAMETER(out_channel);
return nodes_.back()->out_value_range().second;
}
void save(std::ostream& os) const { // NOLINT
for (auto& l : nodes_) {
l->save(os);
}
}
void load(std::istream& is) { // NOLINT
setup(false);
for (auto& l : nodes_) {
l->load(is);
}
}
virtual void load(const std::vector<float_t>& vec) {
int idx = 0;
setup(false);
for (auto& l : nodes_) {
l->load(vec, idx);
}
}
void label2vec(const label_t* t, serial_size_t num, std::vector<vec_t> *vec) const {
serial_size_t outdim = out_data_size();
vec->reserve(num);
for (serial_size_t i = 0; i < num; i++) {
assert(t[i] < outdim);
vec->emplace_back(outdim, target_value_min());
vec->back()[t[i]] = target_value_max();
}
}
template <typename OutputArchive>
void save_model(OutputArchive & oa) const;
template <typename InputArchive>
void load_model(InputArchive & ia);
template <typename OutputArchive>
void save_weights(OutputArchive & oa) const {
for (auto n : nodes_) {
oa(*n);
}
}
template <typename InputArchive>
void load_weights(InputArchive & ia) {
for (auto n : nodes_) {
ia(*n);
}
}
protected:
template <typename T>
void push_back(T&& node) {
push_back_impl(std::forward<T>(node),
typename std::is_rvalue_reference<decltype(node)>::type()); // NOLINT
}
template <typename T>
void push_back(std::shared_ptr<T> node) {
own_nodes_.push_back(node);
nodes_.push_back(own_nodes_.back().get());
}
// transform indexing so that it's more suitable for per-layer operations
// input: [sample][channel][feature]
// output: [channel][sample][feature]
std::vector<tensor_t> reorder_for_layerwise_processing(const std::vector<tensor_t>& input) {
const serial_size_t sample_count = static_cast<serial_size_t>(input.size());
const serial_size_t channel_count = static_cast<serial_size_t>(input[0].size());
// @todo we could perhaps pass pointers to underlying vec_t objects, in order to avoid copying
std::vector<tensor_t> output(channel_count, tensor_t(sample_count));
for (serial_size_t sample = 0; sample < sample_count; ++sample) {
assert(input[sample].size() == channel_count);
for (serial_size_t channel = 0; channel < channel_count; ++channel) {
output[channel][sample] = input[sample][channel];
}
}
return output;
}
template <typename T>
void push_back_impl(T&& node, std::true_type) { // is_rvalue_reference
own_nodes_.push_back(std::make_shared<
typename std::remove_reference<T>::type>(std::forward<T>(node)));
nodes_.push_back(own_nodes_.back().get());
}
template <typename T>
void push_back_impl(T&& node, std::false_type) {
nodes_.push_back(&node);
}
/* Nodes which this class has ownership */
std::vector<std::shared_ptr<layer>> own_nodes_;
/* List of all nodes which includes own_nodes */
std::vector<layerptr_t> nodes_;
};
/**
* single-input, single-output feedforward network
**/
class sequential : public nodes {
public:
void backward(const std::vector<tensor_t>& first) override {
const std::vector<tensor_t> reordered_grad = reorder_for_layerwise_processing(first);
assert(reordered_grad.size() == 1);
nodes_.back()->set_out_grads({ reordered_grad[0] });
for (auto l = nodes_.rbegin(); l != nodes_.rend(); l++) {
(*l)->backward();
}
}
std::vector<tensor_t> forward(const std::vector<tensor_t>& first) override {
const std::vector<tensor_t> reordered_data = reorder_for_layerwise_processing(first);
assert(reordered_data.size() == 1);
nodes_.front()->set_in_data({ reordered_data[0] });
for (auto l : nodes_) {
l->forward();
}
const std::vector<tensor_t> out = nodes_.back()->output();
return normalize_out(out);
}
template <typename T>
void add(T&& layer) {
push_back(std::forward<T>(layer));
if (nodes_.size() != 1) {
auto head = nodes_[nodes_.size()-2];
auto tail = nodes_[nodes_.size()-1];
connect(head, tail, 0, 0);
auto out = head->outputs();
auto in = tail->inputs();
}
check_connectivity();
}
void check_connectivity() {
for (serial_size_t i = 0; i < nodes_.size() - 1; i++) {
auto out = nodes_[i]->outputs();
auto in = nodes_[i+1]->inputs();
if (out[0] != in[0]) {
throw nn_error("");
}
}
}
template <typename InputArchive>
void load_connections(InputArchive& ia) {
for (serial_size_t i = 0; i < nodes_.size() - 1; i++) {
auto head = nodes_[i];
auto tail = nodes_[i + 1];
connect(head, tail, 0, 0);
}
}
template <typename OutputArchive>
void save_connections(OutputArchive& ) const { }
private:
friend class nodes;
std::vector<tensor_t> normalize_out(const std::vector<tensor_t>& out)
{
// normalize indexing back to [sample][layer][feature]
std::vector<tensor_t> normalized_output;
const size_t sample_count = out[0].size();
normalized_output.resize(sample_count, tensor_t(1));
for (size_t sample = 0; sample < sample_count; ++sample) {
normalized_output[sample][0] = out[0][sample];
}
return normalized_output;
}
};
/**
* generic graph network
* @todo not implemented
**/
class graph : public nodes {
public:
void backward(const std::vector<tensor_t>& out_grad) override {
serial_size_t output_channel_count = static_cast<serial_size_t>(out_grad[0].size());
if (output_channel_count != output_layers_.size()) {
throw nn_error("input size mismatch");
}
const std::vector<tensor_t> reordered_grad = reorder_for_layerwise_processing(out_grad);
assert(reordered_grad.size() == output_channel_count);
for (serial_size_t i = 0; i < output_channel_count; i++) {
output_layers_[i]->set_out_grads({ reordered_grad[i] });
}
for (auto l = nodes_.rbegin(); l != nodes_.rend(); l++) {
(*l)->backward();
}
}
std::vector<tensor_t> forward(const std::vector<tensor_t>& in_data) override {
serial_size_t input_data_channel_count = static_cast<serial_size_t>(in_data[0].size());
if (input_data_channel_count != input_layers_.size()) {
throw nn_error("input size mismatch");
}
const std::vector<tensor_t> reordered_data = reorder_for_layerwise_processing(in_data);
assert(reordered_data.size() == input_data_channel_count);
for (serial_size_t channel_index = 0; channel_index < input_data_channel_count; channel_index++) {
input_layers_[channel_index]->set_in_data({ reordered_data[channel_index] });
}
for (auto l : nodes_) {
l->forward();
}
return merge_outs();
}
void construct(const std::vector<layerptr_t>& input,
const std::vector<layerptr_t>& output) {
std::vector<layerptr_t> sorted;
std::vector<nodeptr_t> input_nodes(input.begin(), input.end());
std::unordered_map<node*, std::vector<uint8_t>> removed_edge;
// topological-sorting
while (!input_nodes.empty()) {
sorted.push_back(dynamic_cast<layerptr_t>(input_nodes.back()));
input_nodes.pop_back();
layerptr_t curr = sorted.back();
std::vector<node*> next = curr->next_nodes();
for (size_t i = 0; i < next.size(); i++) {
if (!next[i]) continue;
// remove edge between next[i] and current
if (removed_edge.find(next[i]) == removed_edge.end()) {
removed_edge[next[i]] =
std::vector<uint8_t>(next[i]->prev_nodes().size(), 0);
}
std::vector<uint8_t>& removed = removed_edge[next[i]];
removed[find_index(next[i]->prev_nodes(), curr)] = 1;
if (std::all_of(removed.begin(), removed.end(), [](uint8_t x) {
return x == 1; })) {
input_nodes.push_back(next[i]);
}
}
}
for (auto& n : sorted) {
nodes_.push_back(n);
}
input_layers_ = input;
output_layers_ = output;
setup(false);
}
private:
friend class nodes;
struct _graph_connection {
void add_connection(serial_size_t head, serial_size_t tail, serial_size_t head_index, serial_size_t tail_index) {
if (!is_connected(head, tail, head_index, tail_index)) {
connections.emplace_back(head, tail, head_index, tail_index);
}
}
bool is_connected(serial_size_t head, serial_size_t tail, serial_size_t head_index, serial_size_t tail_index) const {
return std::find(connections.begin(),
connections.end(),
std::make_tuple(head, tail, head_index, tail_index)) != connections.end();
}
template <typename Archive>
void serialize(Archive & ar) {
ar(CEREAL_NVP(connections), CEREAL_NVP(in_nodes), CEREAL_NVP(out_nodes));
}
std::vector<std::tuple<serial_size_t, serial_size_t, serial_size_t, serial_size_t>> connections;
std::vector<serial_size_t> in_nodes, out_nodes;
};
template <typename OutputArchive>
void save_connections(OutputArchive& oa) const {
_graph_connection gc;
std::unordered_map<node*, serial_size_t> node2id;
serial_size_t idx = 0;
for (auto n : nodes_) {
node2id[n] = idx++;
}
for (auto l : input_layers_) {
gc.in_nodes.push_back(node2id[l]);
}
for (auto l : output_layers_) {
gc.out_nodes.push_back(node2id[l]);
}
for (auto l : input_layers_) {
graph_traverse(l, [=](layer& l) {}, [&](edge& e) {
auto next = e.next();
serial_size_t head_index = e.prev()->next_port(e);
for (auto n : next) {
serial_size_t tail_index = n->prev_port(e);
gc.add_connection(node2id[e.prev()], node2id[n], head_index, tail_index);
}
});
}
oa(cereal::make_nvp("graph", gc));
}
template <typename InputArchive>
void load_connections(InputArchive& ia) {
_graph_connection gc;
ia(cereal::make_nvp("graph", gc));
for (auto c : gc.connections) {
serial_size_t head, tail, head_index, tail_index;
std::tie(head, tail, head_index, tail_index) = c;
connect(nodes_[head], nodes_[tail], head_index, tail_index);
}
for (auto in : gc.in_nodes) {
input_layers_.push_back(nodes_[in]);
}
for (auto out : gc.out_nodes) {
output_layers_.push_back(nodes_[out]);
}
}
// normalize indexing back to [sample][layer][feature]
std::vector<tensor_t> merge_outs() {
std::vector<tensor_t> merged;
serial_size_t output_channel_count = static_cast<serial_size_t>(output_layers_.size());
for (serial_size_t output_channel = 0; output_channel < output_channel_count; ++output_channel) {
std::vector<tensor_t> out = output_layers_[output_channel]->output();
serial_size_t sample_count = static_cast<serial_size_t>(out[0].size());
if (output_channel == 0) {
assert(merged.empty());
merged.resize(sample_count, tensor_t(output_channel_count));
}
assert(merged.size() == sample_count);
for (serial_size_t sample = 0; sample < sample_count; ++sample) {
merged[sample][output_channel] = out[0][sample];
}
}
return merged;
}
serial_size_t find_index(const std::vector<node*>& nodes,
layerptr_t target) {
for (serial_size_t i = 0; i < nodes.size(); i++) {
if (nodes[i] == static_cast<node*>(&*target)) return i;
}
throw nn_error("invalid connection");
}
std::vector<layerptr_t> input_layers_;
std::vector<layerptr_t> output_layers_;
};
template <typename OutputArchive>
void nodes::save_model(OutputArchive & oa) const {
oa(cereal::make_nvp("nodes", nodes_));
if (typeid(*this) == typeid(sequential)) {
dynamic_cast<const sequential*>(this)->save_connections(oa);
}
else {
dynamic_cast<const graph*>(this)->save_connections(oa);
}
}
template <typename InputArchive>
void nodes::load_model(InputArchive & ia) {
own_nodes_.clear();
nodes_.clear();
ia(cereal::make_nvp("nodes", own_nodes_));
for (auto& n : own_nodes_) {
nodes_.push_back(&*n);
}
if (typeid(*this) == typeid(sequential)) {
dynamic_cast<sequential*>(this)->load_connections(ia);
}
else {
dynamic_cast<graph*>(this)->load_connections(ia);
}
}
} // namespace tiny_dnn
|