1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
/*
Copyright (c) 2016, Taiga Nomi, Edgar Riba
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the <organization> nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "tiny_dnn/core/backend.h"
#include "tiny_dnn/core/kernels/avx_deconv2d_kernel.h"
#include "tiny_dnn/core/kernels/avx_deconv2d_back_kernel.h"
namespace tiny_dnn {
namespace core {
class avx_backend : public backend {
public:
// context holds solution-dependent parameters
// context should be able to hold any types of structures (like boost::any)
// convolution
avx_backend(conv_params* params,
std::function<void(const tensor_t&)> f1,
std::function<void(const tensor_t&, tensor_t&)> f2,
std::function<void(const tensor_t&, const tensor_t&, tensor_t&)> f3,
conv_layer_worker_specific_storage* ptr)
: params_c_(params)
, conv_layer_worker_storage_(ptr)
, copy_and_pad_input(f1)
, copy_and_unpad_delta(f2)
, backward_activation(f3) {}
// deconvolution
avx_backend(deconv_params* params,
std::function<void(const tensor_t&)> f1,
std::function<void(const tensor_t&, tensor_t&)> f2,
std::function<void(const tensor_t&, const tensor_t&, tensor_t&)> f3,
deconv_layer_worker_specific_storage* ptr)
: params_d_(params)
, deconv_layer_worker_storage_(ptr)
, copy_and_unpad_output(f1)
, copy_and_pad_delta(f2)
, backward_activation(f3) {}
// maxpooling
avx_backend(std::vector<std::vector<serial_size_t>>* out2in,
std::vector<serial_size_t>* in2out,
std::function<void(const tensor_t&, const tensor_t&, tensor_t&)> f,
max_pooling_layer_worker_specific_storage* ptr)
: max_pooling_layer_worker_storage_(ptr)
, out2in_(out2in)
, in2out_(in2out)
, backward_activation(f) {}
// fully_connected
avx_backend(fully_params* params,
std::function<void(const tensor_t&, const tensor_t&, tensor_t&)> f)
: params_f_(params)
, backward_activation(f) {}
// core math functions
void conv2d(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
if (params_c_) return; // workaround to fix warnings
if (params_f_) return; // workaround to fix warnings
if (conv_layer_worker_storage_) return; // workaround to fix warnings
/*copy_and_pad_input(*in_data[0]);
const vec_t& W = (*in_data[1])[0];
const vec_t& bias = (*in_data[2])[0];
tensor_t& a = *out_data[1];
const std::vector<const vec_t*> &in = (*conv_layer_worker_storage_).prev_out_padded_; // input // NOLINT
fill_tensor(a, float_t(0));
kernels::avx_conv2d_kernel(*params_c_,
in, W, bias, a, layer_->parallelize());*/
}
void conv2d_q(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
throw nn_error("not implemented yet.");
}
void conv2d_eq(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
throw nn_error("not implemented yet.");
}
void conv2d(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
/*conv_layer_worker_specific_storage& cws = (*conv_layer_worker_storage_);
//std::vector<const vec_t*>& prev_out = cws.prev_out_padded_;
const vec_t& W = (*in_data[1])[0];
tensor_t& dW = *in_grad[1];
tensor_t& db = *in_grad[2];
tensor_t& curr_delta = *out_grad[1];
tensor_t* prev_delta = (params_c_->pad_type == padding::same) ?
&cws.prev_delta_padded_ : in_grad[0];
assert(W.size() == params_c_->weight.size());
assert(dW[0].size() == params_c_->weight.size());
assert(curr_delta[0].size() == layer_->out_shape()[0].size());
backward_activation(*out_grad[0], *out_data[0], curr_delta);
fill_tensor(*prev_delta, float_t(0));
kernels::avx_conv2d_back_kernel(*params_c_,
prev_out, W, dW, db, curr_delta, prev_delta);
if (params_c_->pad_type == padding::same) {
copy_and_unpad_delta(cws.prev_delta_padded_, *in_grad[0]);
}*/
}
void conv2d_q(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
throw nn_error("not implemented yet.");
}
void deconv2d(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
(*deconv_layer_worker_storage_).prev_out_ = in_data[0];
const vec_t& W = (*in_data[1])[0];
const vec_t& bias = (*in_data[2])[0];
tensor_t& a = *out_data[1];
const tensor_t &in = *in_data[0]; // input
fill_tensor(a, float_t(0));
kernels::avx_deconv2d_kernel(*params_d_,
in, W, bias, a, layer_->parallelize());
copy_and_unpad_output(a);
a = *(*deconv_layer_worker_storage_).curr_out_unpadded_;
}
void deconv2d_q(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
throw nn_error("not implemented yet.");
}
void deconv2d_eq(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
throw nn_error("not implemented yet.");
}
void deconv2d(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
deconv_layer_worker_specific_storage& cws = (*deconv_layer_worker_storage_);
if (params_d_->pad_type == padding::same)
copy_and_pad_delta(cws.curr_delta_padded, *in_grad[0]);
const tensor_t& prev_out = *(cws.prev_out_);
const vec_t& W = (*in_data[1])[0];
tensor_t& dW = *in_grad[1];
tensor_t& db = *in_grad[2];
tensor_t& curr_delta = (params_d_->pad_type == padding::same) ? cws.curr_delta_padded : *out_grad[1];
tensor_t* prev_delta = in_grad[0];
assert(W.size() == params_d_->weight.size());
assert(dW[0].size() == params_d_->weight.size());
assert(curr_delta[0].size() == layer_->out_shape()[0].size());
backward_activation(*out_grad[0], *out_data[0], curr_delta);
fill_tensor(*prev_delta, float_t(0));
kernels::avx_deconv2d_back_kernel(*params_d_,
prev_out, W, dW, db, curr_delta, prev_delta);
}
void deconv2d_q(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
throw nn_error("not implemented yet.");
}
void maxpool(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
// just to fix warning. Remove in a future
if (max_pooling_layer_worker_storage_) {}
if (out2in_) {}
if (in2out_) {}
/*const tensor_t& in = *in_data[0];
tensor_t& a = *out_data[1];
std::vector<std::vector<serial_size_t>>& max_idx =
(*max_pooling_layer_worker_storage_).out2inmax_;
kernels::avx_maxpool_kernel(in, a,
max_idx, *out2in_, layer_->parallelize());*/
}
void maxpool(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
/*tensor_t& prev_delta = *in_grad[0];
tensor_t& curr_delta = *out_grad[1];
std::vector<std::vector<serial_size_t>>& max_idx =
(*max_pooling_layer_worker_storage_).out2inmax_;
CNN_UNREFERENCED_PARAMETER(in_data);
backward_activation(*out_grad[0], *out_data[0], curr_delta);
kernels::avx_maxpool_back_kernel(prev_delta, curr_delta,
max_idx, *in2out_, layer_->parallelize());*/
}
void fully(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
/*const tensor_t& in = *in_data[0];
const vec_t& W = (*in_data[1])[0];
tensor_t& a = *out_data[1];
kernels::avx_fully_connected_kernel(*params_f_,
in, W, params_f_->has_bias_ ? (*in_data[2])[0] : vec_t(),
a, layer_->parallelize());*/
}
void fully_q(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
throw nn_error("not implemented yet.");
}
void fully_eq(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
throw nn_error("not implemented yet.");
}
void fully(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
/*const tensor_t& prev_out = *in_data[0];
const vec_t& W = (*in_data[1])[0];
tensor_t& dW = *in_grad[1];
tensor_t& db = *in_grad[2];
tensor_t& prev_delta = *in_grad[0];
tensor_t& curr_delta = *out_grad[1];
backward_activation(*out_grad[0], *out_data[0], curr_delta);
kernels::avx_fully_connected_back_kernel(*params_f_, prev_out,
W, dW, prev_delta, curr_delta, db, layer_->parallelize());*/
}
void fully_q(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
throw nn_error("not implemented yet.");
}
backend_t type() const override { return backend_t::avx; }
private:
/* Pointer to the convolution parameters */
conv_params* params_c_;
deconv_params* params_d_;
fully_params* params_f_;
/* Pointer to the workers */
conv_layer_worker_specific_storage* conv_layer_worker_storage_;
deconv_layer_worker_specific_storage* deconv_layer_worker_storage_;
max_pooling_layer_worker_specific_storage* max_pooling_layer_worker_storage_;
std::vector<std::vector<serial_size_t>>* out2in_;
std::vector<serial_size_t>* in2out_;
/* Pointers to parent class functions */
std::function<void(const tensor_t&)> copy_and_pad_input;
std::function<void(const tensor_t&)> copy_and_unpad_output;
std::function<void(const tensor_t&, tensor_t&)> copy_and_unpad_delta;
std::function<void(const tensor_t&, tensor_t&)> copy_and_pad_delta;
std::function<void(const tensor_t&, const tensor_t&, tensor_t&)> backward_activation;
};
} // namespace core
} // namespace tiny_dnn
|