1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
/*
Copyright (c) 2016, Taiga Nomi, Edgar Riba
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the <organization> nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "tiny_dnn/core/backend.h"
namespace tiny_dnn {
namespace core {
class dnn_backend : public backend {
public:
// context holds solution-dependent parameters
// context should be able to hold any types of structures (like boost::any)
dnn_backend() {}
// core math functions
void conv2d(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
throw nn_error("not implemented yet.");
}
void conv2d_q(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
throw nn_error("not implemented yet.");
}
void conv2d_eq(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
throw nn_error("not implemented yet.");
}
void conv2d(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
throw nn_error("not implemented yet.");
}
void conv2d_q(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
throw nn_error("not implemented yet.");
}
void deconv2d(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
throw nn_error("not implemented yet.");
}
void deconv2d_q(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
throw nn_error("not implemented yet.");
}
void deconv2d_eq(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
throw nn_error("not implemented yet.");
}
void deconv2d(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
throw nn_error("not implemented yet.");
}
void deconv2d_q(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
throw nn_error("not implemented yet.");
}
void maxpool(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
throw nn_error("not implemented yet.");
}
void maxpool(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
throw nn_error("not implemented yet.");
}
void fully(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
throw nn_error("not implemented yet.");
}
void fully_q(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
throw nn_error("not implemented yet.");
}
void fully_eq(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
throw nn_error("not implemented yet.");
}
void fully(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
throw nn_error("not implemented yet.");
}
void fully_q(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
throw nn_error("not implemented yet.");
}
backend_t type() const override { return backend_t::libdnn; }
};
} // namespace core
} // namespace tiny_dnn
|