1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
/*
Copyright (c) 2016, Taiga Nomi, Edgar Riba
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the <organization> nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "tiny_dnn/core/backend.h"
#include "tiny_dnn/core/kernels/nnp_deconv2d_kernel.h"
namespace tiny_dnn {
namespace core {
class nnp_backend : public backend {
public:
// context holds solution-dependent parameters
// context should be able to hold any types of structures (like boost::any)
// convolution
nnp_backend(conv_params* params,
std::function<void(const tensor_t&)> f1,
conv_layer_worker_specific_storage* ptr)
: params_c_(params)
, conv_layer_worker_storage_(ptr)
, copy_and_pad_input(f1) { init_nnp_engine(); }
// deconvolution
explicit nnp_backend(deconv_params* params)
: params_d_(params) { init_nnp_engine(); }
// maxpool
explicit nnp_backend(maxpool_params* params)
: params_m_(params) { init_nnp_engine(); }
// fully_connected
explicit nnp_backend(fully_params* params)
: params_f_(params) { init_nnp_engine(); }
nnp_backend() { init_nnp_engine(); }
// core math functions
void conv2d(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
if (params_c_) return; // workaround to fix warnings
if (params_f_) return; // workaround to fix warnings
if (params_d_) return; // workaround to fix warnings
if (conv_layer_worker_storage_) return; // workaround to fix warnings
if (deconv_layer_worker_storage_) return; // workaround to fix warnings
/*if (!params_c_->has_bias) {
throw nn_error("NNPACK Convolution requires a bias term.");
}
if (params_c_->w_stride != 1 || params_c_->h_stride != 1) {
throw nn_error("NNPACK Convolution requires stride 1.");
}
copy_and_pad_input(*in_data[0]);
const vec_t& W = (*in_data[1])[0];
const vec_t& bias = (*in_data[2])[0];
tensor_t& a = *out_data[1];
const std::vector<const vec_t*> &in = (*conv_layer_worker_storage_).prev_out_padded_; // input // NOLINT
fill_tensor(a, float_t(0));
// TODO
throw nn_not_implemented_error();
kernels::nnp_conv2d_kernel(*params_c_, in, W, bias, a);*/
}
void conv2d_q(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
throw nn_error("not implemented yet.");
}
void conv2d_eq(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
throw nn_error("not implemented yet.");
}
void conv2d(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
throw nn_error("NNPACK does not support back propagation.");
}
void conv2d_q(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
throw nn_error("NNPACK does not support back propagation.");
}
void deconv2d(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
}
void deconv2d_q(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
throw nn_error("not implemented yet.");
}
void deconv2d_eq(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
throw nn_error("not implemented yet.");
}
void deconv2d(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
throw nn_error("NNPACK does not support back propagation.");
}
void deconv2d_q(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
throw nn_error("NNPACK does not support back propagation.");
}
void maxpool(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
// just to fix warning: remove in future
if (params_m_) {}
/**if (params_m_->stride_x != 2 || params_m_->stride_y != 2) {
throw nn_error("NNPACK Max-Pool requires a stride == 2.");
}
if (params_m_->pool_size_x != 2 || params_m_->pool_size_y != 2) {
throw nn_error("NNPACK Max-Pool requires a pool size == 2.");
}
const tensor_t& in = *in_data[0];
tensor_t& a = *out_data[1];
kernels::nnp_maxpool_kernel(*params_m_, in, a);*/
}
void maxpool(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
throw nn_error("NNPACK does not support back propagation.");
}
void fully(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
/*const tensor_t& in = *in_data[0];
const vec_t& W = (*in_data[1])[0];
vec_t& b = (*in_data[2])[0];
tensor_t& a = *out_data[1];
kernels::nnp_fully_connected_kernel(*params_f_,
in, W, b, a, layer_->parallelize());*/
}
void fully_q(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
throw nn_error("not implemented yet.");
}
void fully_eq(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data) override {
throw nn_error("not implemented yet.");
}
void fully(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
throw nn_error("NNPACK does not support back propagation.");
}
void fully_q(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad) override {
throw nn_error("NNPACK does not support back propagation.");
}
backend_t type() const override { return backend_t::nnpack; }
private:
/* Pointer to the convolution parameters */
conv_params* params_c_;
deconv_params* params_d_;
maxpool_params* params_m_;
fully_params* params_f_;
/* Pointer to the convolution workers */
conv_layer_worker_specific_storage* conv_layer_worker_storage_;
deconv_layer_worker_specific_storage* deconv_layer_worker_storage_;
/* Pointers to parent class functions */
std::function<void(const tensor_t&)> copy_and_pad_input;
std::function<void(const tensor_t&, tensor_t&)> copy_and_pad_delta;
void init_nnp_engine() {
#ifdef CNN_USE_NNPACK
nnp_status init_status = nnp_initialize();
check_nnp_status(init_status);
if (init_status != nnp_status_success) {
throw nn_error("Could not initialize NNPACK.");
}
#else
throw nn_error("Tiny-cnn has not been compiled with NNPACK support.");
#endif
}
#ifdef CNN_USE_NNPACK
void check_nnp_status(nnp_status status) {
switch (status) {
case nnp_status_success:
break;
case nnp_status_invalid_batch_size:
nn_warn("NNPACK function was called with batch_size == 0");
break;
case nnp_status_invalid_channels:
nn_warn("NNPACK function was called with channels == 0.");
break;
case nnp_status_invalid_input_channels:
nn_warn("NNPACK function was called with input_channels == 0.");
break;
case nnp_status_invalid_output_channels:
nn_warn("NNPACK function was called with output_channels == 0.");
break;
case nnp_status_invalid_input_size:
nn_warn(" NNPACK function was called with input_size.height == 0 or input_size.width == 0.");
break;
case nnp_status_invalid_input_stride:
nn_warn(" NNPACK function was called with input_stride.height == 0 or input_stride.width == 0.");
break;
case nnp_status_invalid_input_padding:
nn_warn("NNPACK function was called with input_padding not less than respective kernel (or pooling) size.");
break;
case nnp_status_invalid_kernel_size:
nn_warn("NNPACK function was called with kernel_size.height == 0 or kernel_size.width == 0.");
break;
case nnp_status_invalid_pooling_size:
nn_warn("NNPACK function was called with pooling_size.height == 0 or pooling_size.width == 0.");
break;
//case nnp_status_invalid_pooling_stride:
// nn_warn("NNPACK function was called with pooling_stride.height == 0 or pooling_stride.width == 0.");
// break;
case nnp_status_invalid_algorithm:
nn_warn("NNPACK function was called with convolution algorithm not in nnp_convolution_algorithm enumeration.");
break;
case nnp_status_unsupported_input_size:
nn_warn("NNPACK does not support the particular input size for the function.");
break;
case nnp_status_unsupported_input_stride:
nn_warn("NNPACK does not support the particular input sride for the function.");
break;
case nnp_status_unsupported_input_padding:
nn_warn("NNPACK does not support the particular input padding for the function.");
break;
case nnp_status_unsupported_kernel_size:
nn_warn("NNPACK does not support the particular kernel size for the function.");
break;
case nnp_status_unsupported_pooling_size:
nn_warn("NNPACK does not support the particular pooling size for the function.");
break;
case nnp_status_unsupported_pooling_stride:
nn_warn("NNPACK does not support the particular pooling stride for the function .");
break;
case nnp_status_unsupported_algorithm:
nn_warn("NNPACK does not support the particular convolution algorithm for the function.");
break;
case nnp_status_uninitialized:
nn_warn("NNPACK function was called before the library was initialized.");
break;
case nnp_status_unsupported_hardware:
nn_warn("NNPACK does not implement this function for the host CPU.");
break;
case nnp_status_out_of_memory:
nn_warn("NNPACK failed to allocate memory for temporary buffers.");
break;
}
}
#endif
};
} // namespace core
} // namespace tiny_dnn
|